分计算iv值_评分卡模型中的IV和WOE详解

本文详细介绍了评分卡模型中IV(Information Value)和WOE(Weight of Evidence)的概念及其作用。IV用于衡量自变量的预测能力,而WOE是对原始变量的一种编码形式。通过WOE和IV的计算,可以评估每个变量对目标变量预测的贡献,并据此选择入模变量。文章通过实例展示了如何计算WOE和IV,并讨论了使用IV而非直接用WOE的原因以及处理极端情况的方法。
摘要由CSDN通过智能技术生成

转载:评分卡模型中的IV和WOE详解 - desolateness - 博客园

Version:1.0 StartHTML:000000214 EndHTML:000018352 StartFragment:000002435 EndFragment:000018266 StartSelection:000002435 EndSelection:000018262 SourceURL:https://www.cnblogs.com/hanxiaosheng/p/9831838.html var currentBlogId = 455642; var currentBlogApp = 'hanxiaosheng'; var cb_enable_mathjax = false; var isLogined = false; var skinName = 'BlueSky';

1.IV的用途
IV的全称是Information Value,中文意思是信息价值,或者信息量。
我们在用逻辑回归、决策树等模型方法构建分类模型时,经常需要对自变量进行筛选。比如我们有200个候选自变量,通常情况下,不会直接把200个变量直接放到模型中去进行拟合训练,而是会用一些方法,从这200个自变量中挑选一些出来,放进模型,形成入模变量列表。那么我们怎么去挑选入模变量呢?
挑选入模变量过程是个比较复杂的过程,需要考虑的因素很多,比如:变量的预测能力,变量之间的相关性,变量的简单性(容易生成和使用),变量的强壮性(不容易被绕过),变量在业务上的可解释性(被挑战时可以解释的通)等等。但是,其中最主要和最直接的衡量标准是变量的预测能力。
“变量的预测能力”这个说法很笼统,很主观,非量化,在筛选变量的时候我们总不能说:“我觉得这个变量预测能力很强,所以他要进入模型”吧?我们需要一些具体的量化指标来衡量每自变量的预测能力,并根据这些量化指标的大小,来确定哪些变量进入模型。IV就是这样一种指标,他可以用来衡量自变量的预测能力。类似的指标还有信息增益、基尼系数等等。
2.对IV的直观理解
从直观逻辑上大体可以这样理解“用IV去衡量变量预测能力”这件事情:我们假设在一个分类问题中,目标变量的类别有两类:Y1,Y2。对于一个待预测的个体A,要判断A属于Y1还是Y2,我们是需要一定的信息的,假设这个信息总量是I,而这些所需要的信息,就蕴含在所有的自变量C1,C2,C3,……,Cn中,那么,对于其中的一个变量Ci来说,其蕴含的信息越多,那么它对于判断A属于Y1还是Y2的贡献就越大,Ci的信息价值就越大,Ci的IV就越大,它就越应该进入到入模变量列表中。
3.IV的计算
前面我们从感性角度和逻辑层面对IV进行了解释和描述,那么回到数学层面,对于一个待评估变量,他的IV值究竟如何计算呢?为了介绍IV的计算方法,我们首先需要认识和理解另一个概念——WOE,因为IV的计算是以WOE为基础的。
3.1WOE
WOE的全称是“Weight of Evidence”,即证据权重。WOE是对原始自变量的一种编码形式。
要对一个变量进行WOE编码,需要首先把这个变量进行分组处理(也叫离散化、分箱等等,说的都是一个意思)。分组后,对于第i组,WOE的计算公式如下:

4478c36d7b1c767dd117d912929c50fc.png


其中,pyi是这个组中响应客户(风险模型中,对应的是违约客户,总之,指的是模型中预测变量取值为“是”或者说1的个体)占所有样本中所有响应客户的比例,pni是这个组中未响应客户占样本中所有未响应客户的比例,#yi是这个组中响应客户的数量,#ni是这个组中未响应客户的数量,#yT是样本中所有响应客户的数量,#nT是样本中所有未响应客户的数量。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
WOE编码和IV是一种常用的特征工程方法,它们可以用于衡量一个特征与目标变量之间的关联程度和预测能力。下面是Python计算IVWOE编码的示例代码: ```python import pandas as pd import numpy as np def calc_woe_iv(df, col, target): """ 计算指定特征的WOE编码和IV :param df: 数据集 :param col: 特征列名 :param target: 目标变量列名 :return: WOE编码和IV """ # 计算该特征每个取的数量和占比 freq = pd.DataFrame({'total': df.groupby(col)[target].count(), 'bad': df.groupby(col)[target].sum()}) freq['good'] = freq['total'] - freq['bad'] freq['bad_rate'] = freq['bad'] / freq['bad'].sum() freq['good_rate'] = freq['good'] / freq['good'].sum() # 防止出现除0错误 freq.loc[freq['bad_rate'] == 0, 'bad_rate'] = 0.0001 freq.loc[freq['good_rate'] == 0, 'good_rate'] = 0.0001 # 计算WOE编码 freq['woe'] = np.log(freq['good_rate'] / freq['bad_rate']) # 计算IV freq['iv'] = (freq['good_rate'] - freq['bad_rate']) * freq['woe'] iv = freq['iv'].sum() return freq[['woe', 'iv']].reset_index().rename(columns={col: 'value'}), iv ``` 这个函数的输入参数包括数据集`df`、特征列名`col`和目标变量列名`target`,输出WOE编码和IV。在函数,我们首先计算了该特征每个取的数量、坏样本数量、好样本数量、坏样本率、好样本率和WOE,然后根据IV的公式计算了每个取对应的IV,并将它们相加得到总的IV。最后,我们将WOE编码和IV合并成一个DataFrame并返回。 需要注意的是,代码为了避免出现除0错误,我们在计算WOE编码和IV时对母加上了一个极小0.0001。同时,WOE编码和IV计算方式可以根据具体的业务需求进行调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值