python heap_Python堆

堆是一种特殊的树结构,其中每个父节点小于或等于其子节点。 然后它被称为最小堆(Min Heap)。 如果每个父节点大于或等于其子节点,则称它为最大堆(Max Heap)。 实施优先级队列是非常有用的,在该队列中,具有较高权重的队列项目在处理中具有更高的优先级。在本章中,我们将学习使用python实现堆数据结构。

创建一个堆

堆是通过使用python内建的名称为heapq的库创建的。 该库具有对堆数据结构进行各种操作的相关功能。 以下是这些函数的列表 -

heapify - 此函数将常规列表转换为堆。 在结果堆中,最小的元素被推到索引位置0。但是其余的数据元素不一定被排序。

heappush - 这个函数在堆中添加一个元素而不改变当前堆。

heappop - 该函数返回堆中最小的数据元素。

heapreplace - 该函数用函数中提供的新值替换最小的数据元素。

通过简单地使用具有heapify函数的元素列表来创建堆。 在下面的例子中,提供了一个元素列表,heapify函数重新排列了元素到最初位置的元素。

import heapq

H = [21,1,45,78,3,5]

# Use heapify to rearrange the elements

heapq.heapify(H)

print(H)

执行上面示例代码,得到以下结果 -

[1, 3, 5, 78, 21, 45]

插入堆

将数据元素插入堆总是在最后一个索引处添加元素。 但是,只有在值最小的情况下,才可以再次应用heapify函数将新添加的元素添加到第一个索引。 在下面的例子中,插入数字 - 8 。

import heapq

H = [21,1,45,78,3,5]

# Covert to a heap

heapq.heapify(H)

print(H)

# Add element

heapq.heappush(H,8)

print(H)

执行上面示例代码,得到以下结果 -

[1, 3, 5, 78, 21, 45]

[1, 3, 5, 78, 21, 45, 8]

从堆中移除

可以使用此功能在第一个索引处移除元素。 在下面的例子中,函数将始终删除索引位置1处的元素。

import heapq

H = [21,1,45,78,3,5]

# Create the heap

heapq.heapify(H)

print(H)

# Remove element from the heap

heapq.heappop(H)

print(H)

执行上面示例代码,得到以下结果 -

[1, 3, 5, 78, 21, 45]

[3, 21, 5, 78, 45]

替换堆

heapreplace函数总是删除堆中最小的元素,并在未被任何顺序修复的地方插入新的传入元素。参考以下示例 -

import heapq

H = [21,1,45,78,3,5]

# Create the heap

heapq.heapify(H)

print(H)

# Replace an element

heapq.heapreplace(H,6)

print(H)

执行上面示例代码,得到以下结果 -

[1, 3, 5, 78, 21, 45]

[3, 6, 5, 78, 21, 45]

¥ 我要打赏

纠错/补充

收藏

加QQ群啦,易百教程官方技术学习群

注意:建议每个人选自己的技术方向加群,同一个QQ最多限加 3 个群。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值