用excel做logistic回归分析_Stephen的SEM博客

本文介绍了如何使用Excel插件进行逻辑回归分析,通过Kaggle的泰坦尼克数据集,详细讲解了从数据预处理到模型优化的步骤,帮助初学者理解逻辑回归并进行预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用Excel进行逻辑回归预测-Kaggle泰坦尼克案例

背景介绍:

因为工作需要进行一些数据预测的工作,对于比较简单的预测可以用线性回归来做,Excel就自带线性回归的公式,点击几下就可以达到结果,比较简单,对于比较复杂的预测就需要用逻辑回归来进行预测

什么是线性回归:

线性回归解决变量是线性的数字,且预测结果是具体的数字,如根据各个渠道的广告费和销售额进行线性回归,拿到线性回归公式后,就可以根据指定的渠道费用预测销售额

什么是逻辑回归:

对于预测结果是分类的数据如根据一个人的特征指标如是否熬夜,是否压力大,年龄,抽烟喝酒状况预测一个人是60岁以后是否会得癌症以及根据一个邮件的标题,内容,称呼,发送时间,发送邮箱来预测一份邮件是否是垃圾邮件,对于这种根据一些特征指标(有的为具体数字如年纪,有的为类型如性别)预测结果为 是或者否的情况,我们需要使用逻辑回归来进行预测

逻辑回归怎么做:

对于逻辑回归,网上很多都是使用Python代码或者SPSS等专业软件来完成,但对于没有经验的小白或没有安装专业分析软件的,有没有一种能在Excel上操作, 像做线性回归那样点击几次鼠标就能轻松拿到结果

我先用百度查询了下逻辑回归excel的关键词,基本上很少,就算用excel也要使用复杂的公式来计算,然后谷歌搜索,使用英文 excel logistic regression,终于找到国外大神的办法,不需要什么懂公式,不需要编程, 点击几次按钮既可完成复杂的逻辑回归预测

案例介绍:

本文以excel插件(Robert Nau,美国杜克大学教授,为MBA课程开发)结合kaggle上(全球公认顶级有80万数据科学家进行机器学习竞赛的平台)网站上的案例-泰坦尼克号幸存者及遇难者名单, 使用幸存人员特征进行逻辑回归预测,找到具备如何特征的人会在这场灾难中有更高的存活率

操作步骤:

Excel插件,推荐使用

https://regressit.com/regressitlogistic.html(再次感谢Robert Nau,美国杜克大学教授)

(备选工具,http://www.real-statistics.com/free-download/)

软件截图如下

1,工具准备-Excel具体的插件安装方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值