python多进程池初始化_Python中的Flask多进程工作池

这篇博客探讨了如何在Python的Flask应用中实现多进程工作池。作者希望通过在应用启动时初始化一批分类器(worker),并在空闲时处理请求。问题在于分类器的启动需要较长时间,因此需要在处理请求时已经运行。文章提到了尝试使用for循环将任务发送到分类器,但未提供完整解决方案,建议使用uWSGI的内置功能或Celery这样的任务队列来达到目的。
摘要由CSDN通过智能技术生成

我对做我想做的事情的最佳方式感到很困惑.

我有一系列需要花费大量时间来处理的工作,所以我想在应用启动时初始化一大批“工人”,以便在免费时处理请求.

细分过程:

>在app启动时创建10个分类器(worker),并让它们在某处保持空闲状态.

>当应用程序启动时,请求通过Flask POST命令发出.

>请求被传递给可用的分类器.

>分类器返回作业结果.

我该怎么做呢?

编辑:值得注意的是,分类器需要花费大量时间来启动,因此需要可用并且在传递给它们的工作时已经运行.

class View(views.MethodView):

def get(self):

return render_template('index.html')

def post(self):

app_form_elements = request.form

#Assumption button clicked on browser interface...

jobs = ["job one", "job two", "job three"]

for job in jobs:

#Send each job to next available classifier pool.

return self.get()

app.add_url_rule('/', view_func=View.as_view('main'), methods=['GET','POST'])

app.debug = True

if __name__ == '__main__':

app.run(threaded=True)

编辑:

分类器设置是这样的:

class Classifier():

"""

Class will take in a classifier and a test data set and print out the overall accuracy.

"""

def __init__(self):

self.load = self.toSomeStuff()

print('classifier initialised.\n')

def doSomeWork(self):

#Initialised classifier objects called with work to do.

initialise_classifier = Classifier()

#the jobs

initialise_classifier.doSomeWork()

所以基本上我需要一个预先初始化的分类器池,然后能够通过post方法调用每个作业调用它们的“doSomeWork”函数.

最佳答案 你不能在Flask中这样做.但是,您可以使用例如uWSGI内置功能或Celery等任务队列来获得相同的结果.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值