客户端开发是做什么的_LOL的客户端到底是什么技术开发出来,不少人感觉新版客户端卡...

本文详细介绍了《英雄联盟》(LOL)新版客户端的技术架构,包括前端使用HTML5和JS渲染,后端采用C++处理业务逻辑,以及利用Chromium框架实现功能。此外,还解释了新版客户端相较于旧版的优势及为何会出现加载卡顿的现象。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

现在使用的LOL的新版客户端,很多人登陆之后会感觉加载会有卡顿,抛去硬件和网速的原因,我特意去研究了LOL客户端的开发技术,大致也了解了一些,因为运用了很多实时更新的技术,所以在登录后会有加载的问题。

很多玩LOL的玩家可能没有想过LOL的程序到底是什么架构的,恰好笔者学过几年开发,也是LOL资深的玩家,如果使用过LOL以前的客户端的老玩家,和现在最新的客户端相比,会有这样的感觉,以前的LOL客户端更像是传统的游戏普遍的客户端,实时互动的内容不多,而新客户端却更像是浏览器的一个个网页。

老版的客户端开发运用到了AdobeAir,但是后面随着LOL的发展,老技术已经出面了很多的问题,例如玩家在进行一场游戏的时候,希望保持登录,接受好友请求等,旧有的技术占用资源过高。

d138e15f26c5f94f9106217f3a8cae6f.png

LOL新界面

LOL的版本更迭很快,很多新功能需要添加,所以开发一个新的客户端就不得不提上了日程,这时候利用HTML5和JS来开发客户端是一个比较成熟的选择,所以新版的LOL客户端前段UI用到了HTML5和JS的渲染技术,业务逻辑和后端通信则是利用C++来处理。

所以我们看到LOL客户端的主界面的每一个操作就好像是一个个的链接,我们点击鼠标打开商店的时候,有时候会有一个刷新过程,并不是客户端设计的不好,实际上新版客户端设计的远比旧版要好。

前端的开发,用到了嵌入式Chromium框架,也就是简称CEF的东西,CEF基本的框架包含C/C++程序接口,,通过本地库的接口来实现,而这个库则会隔离宿主程序和Chromium&Webkit的操作细节,支持HTML5等技术,可以实现JS、HTML5、CSS的解析。

通过新的架构,用户可以实现很多的功能,各个模块是既有独立又有关联的,它们之间又通过某种机制保持通信的畅通,调用本地的英雄图片和声音资源,与好友联系,对局中的状况等都不会受到影响。

7bf8e8e483949d8546068a8e1892212b.png

启动lol后台进程

LeagueClient(主进程,承担前端、后端插件、与服务器通信)、LeagueClientUx(CEF承载进程,负责前段容器逻辑处理和LeagueClient通信)、LeagueClientUxRender(CEF承载进程,CEF承载进程,负责界面渲染等)。

因为前段和后端相互不受影响,这样我们在进入到游戏对局的时候,就可以选择把游戏的客户端关闭,如果你在游戏内的帧数较低、电脑配置较低,可以选择在设置中勾上这个选项,有利于玩游戏时的顺畅。

我想随着技术的发展,还会有更多的技术应用到LOL的开发中,现在的端游普遍对硬件的要求偏高,而LOL算是对电脑要求比较低的流行游戏了,即使是在配置很低的老机器上,也可以流畅运行。

eec1fb969fe9a12e7cd336f41a8b213a.png

LOL设置界面

### 第十四届蓝桥杯国赛概述 第十四届蓝桥杯国赛是一场面向全国范围内的信息技术竞赛,主要针对编程能力、算法设计以及逻辑思维等方面进行全面考察。比赛分为多个组别,包括但不限于青少年组、大学组等,每组题目难度不同,旨在适应各年龄段参赛者的水平。 #### 试题解析概览 以下是基于已知引用内容对部分试题的解析: 1. **试题A: 子2023** - 这道题的具体描述未完全提供,但从其名称推测可能涉及某种特定模式下的数值计算或字符串处理[^1]。 2. **试题B: 双子数** - 此类问题通常围绕两个具有特殊关系的数字展开,比如它们可能是互质、倍数或其他数学特性上的关联。 3. **试题C: 班级活动** - 描述了一种模拟场景的应用题型,重点在于如何通过合理安排实现最优目标,例如时间分配或者资源最大化利用等问题。 4. **试题D: 合并数列** - 关于数组操作的经典算法之一——合并有序列表的操作方法及其变体形式。这类问题考验选手对于基本数据结构的理解程度以及灵活运用技巧的能力。 5. **最大区间 (引用相关内容)[^2]** - 给定一组连续整数序列,寻找其中满足某些条件的最大长度子串。此类型的题目往往需要考虑边界情况以及效率优化策略。 6. **约分问题 [^3]** - 将给定的一个分数简化至不可再简化的状态即为其最简形式。解决此类问题的关键在于找到分子与分母之间的最大公因数(GCD),并通过除法将其消除掉直到两者互素为止。 7. **Python语言考点分析 [^4]** - 枚举作为一种基础却非常有效的穷尽可能性手段,在许多实际应用场合下都扮演着重要角色;然而当面对较大规模的数据集时,则需注意性能瓶颈所在,并尝试采用更高效的替代方案来提升运行速度。 ```python def gcd(a, b): while b != 0: a, b = b, a % b return abs(a) numerator = int(input("Enter the numerator: ")) denominator = int(input("Enter the denominator: ")) if(denominator == 0): print("Error! Division by zero.") else: common_divisor = gcd(numerator, denominator) simplified_numerator = numerator // common_divisor simplified_denominator = denominator // common_divisor if(simplified_denominator==1): result=str(simplified_numerator) else: result=f"{simplified_numerator}/{simplified_denominator}" print(f"Simplified fraction is {result}.") ``` 上述代码展示了如何实现一个简单的函数用于求取两正整数间的GCD,并据此完成对应分数的约分化简过程。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值