机器学习——决策树节点生成算法
决策树是一种常用的机器学习模型,它能够根据数据特征的不同进行分类或回归。决策树的关键在于节点的生成算法,不同的生成算法会影响决策树的结构和性能。本篇博客将介绍三种常用的决策树节点生成算法:ID3算法、C4.5算法和CART算法,包括详细的理论介绍、算法公式和Python实现,并对三种算法进行对比与总结。
1. ID3算法(Iterative Dichotomiser 3)
ID3算法是一种基于信息增益的决策树节点生成算法,由Ross Quinlan在1986年提出。它通过选择信息增益最大的特征来进行节点划分。
算法步骤:
- 若数据集属于同一类别,则将当前节点标记为叶节点,类别为该类别。
- 若特征集为空,则将当前节点标记为叶节点,类别为数据集中出现次数最多的类别。
- 计算每个特征的信息增益,选择信息增益最大的特征作为当前节点的划分特征。
- 根据选定的特征进行节点划分,生成子节点,并递归地对子节点进行以上步骤。
算法公式:
信息增益的计算公式为:
Gain(D,A)=H(D)−H(D∣A) \text{Gain}(D, A) = H(D) - H(D|A) Gain(D,A)=H(D)−H(D∣A)
其中,DDD是数据集,AAA是特征,H(D)H(D)H(D)是数据集DDD的熵,H(D∣A)H(D|A)H(D∣A)是在已知特征AAA的条件下,数据集DDD的条件熵。
2. C4.5算法
C4.5算法是ID3算法的改进版本,由Ross Quinlan在1993年提出。相比于ID3算法,C4.5算法解决了ID3算法不能处理连续特征、样本缺失值和过拟合问题。

本文详细介绍了决策树中的ID3、C4.5和CART三种节点生成算法,包括它们的理论基础、算法步骤、优缺点,以及在Python中的应用实例。C4.5算法改进了ID3,能处理连续特征和缺失值,CART则适用于分类和回归。
最低0.47元/天 解锁文章
2213

被折叠的 条评论
为什么被折叠?



