机器学习——决策树剪枝算法

101 篇文章 3 订阅
44 篇文章 4 订阅

机器学习——决策树剪枝算法

决策树是一种常用的机器学习模型,它能够根据数据特征的不同进行分类或回归。在决策树的构建过程中,剪枝算法是为了防止过拟合,提高模型的泛化能力而提出的重要技术。本篇博客将介绍剪枝处理的概念、预剪枝和后剪枝方法,以及决策树的损失函数(目标函数),并使用Python实现以上所有的算法。

1. 剪枝处理

在决策树的构建过程中,为了防止过拟合,通常会对生成的决策树进行剪枝处理。剪枝的目的是通过降低树的复杂度来提高模型的泛化能力。

2. 预剪枝与后剪枝

预剪枝是在决策树生成过程中,在决策树生长的过程中,根据一定的条件提前终止分支的生成。常用的预剪枝条件包括限制树的最大深度、叶节点最小样本数等。

后剪枝是在决策树生成完成后,通过一定的方法对决策树进行剪枝。后剪枝的思想是先生成一颗完全生长的决策树,然后根据损失函数(目标函数)对节点进行逐个判断,判断删除某一节点后是否能提高模型的泛化能力,如果能,则删除该节点。

3. 决策树的损失函数

决策树的损失函数(目标函数)是在剪枝过程中判断节点是否应该被剪枝的依据。通常使用的损失函数包括基于误分类率、基尼指数和交叉熵等。

3.1 基于误分类率的损失函数:

C α ( T ) = C ( T ) + α ∣ T ∣ C_{\alpha}(T) = C(T) + \alpha|T| Cα(T)=C(T)+αT

其中, C ( T ) C(T) C(T)是模型对训练数据的误分类率, ∣ T ∣ |T| T是决策树的叶节点个数, α \alpha α是调节参数。

3.2 基于基尼指数的损失函数:

C α ( T ) = C ( T ) + α ∣ T ∣ C_{\alpha}(T) = C(T) + \alpha|T| Cα(T)=C(T)+αT

其中, C ( T ) C(T) C(T)是模型的基尼指数, ∣ T ∣ |T| T是决策树的叶节点个数, α \alpha α是调节参数。

3.3 基于交叉熵的损失函数:

C α ( T ) = C ( T ) + α ∣ T ∣ C_{\alpha}(T) = C(T) + \alpha|T| Cα(T)=C(T)+αT

其中, C ( T ) C(T) C(T)是模型的交叉熵, ∣ T ∣ |T| T是决策树的叶节点个数, α \alpha α是调节参数。

4. Python实现

接下来,将使用Python实现预剪枝和后剪枝两种剪枝算法,并在相同的数据集上进行比较。

4.1 预剪枝算法

from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 加载数据集
iris = load_iris()
X, y = iris.data, iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 构建决策树模型(预剪枝)
clf = DecisionTreeClassifier(criterion='entropy', max_depth=3, min_samples_split=5, min_samples_leaf=2, random_state=42)
clf.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = clf.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("Pre-pruning Accuracy:", accuracy)

4.2 后剪枝算法

from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 加载数据集
iris = load_iris()
X, y = iris.data, iris.target

#```python
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 构建决策树模型(后剪枝)
clf = DecisionTreeClassifier(criterion='entropy', random_state=42)
clf.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = clf.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("Before Pruning Accuracy:", accuracy)

# 后剪枝
path = clf.cost_complexity_pruning_path(X_train, y_train)
ccp_alphas, impurities = path.ccp_alphas, path.impurities

clfs = []
for ccp_alpha in ccp_alphas:
    clf = DecisionTreeClassifier(criterion='entropy', random_state=42, ccp_alpha=ccp_alpha)
    clf.fit(X_train, y_train)
    clfs.append(clf)

train_scores = [clf.score(X_train, y_train) for clf in clfs]
test_scores = [clf.score(X_test, y_test) for clf in clfs]

best_clf = clfs[test_scores.index(max(test_scores))]
y_pred = best_clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("After Pruning Accuracy:", accuracy)

示例

import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score

# 加载数据集
iris = load_iris()
X, y = iris.data, iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 构建决策树模型(后剪枝)
clf = DecisionTreeClassifier(criterion='entropy', random_state=42)
clf.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = clf.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("Before Pruning Accuracy:", accuracy)

# 后剪枝
path = clf.cost_complexity_pruning_path(X_train, y_train)
ccp_alphas, impurities = path.ccp_alphas, path.impurities

clfs = []
for ccp_alpha in ccp_alphas:
    clf = DecisionTreeClassifier(criterion='entropy', random_state=42, ccp_alpha=ccp_alpha)
    clf.fit(X_train, y_train)
    clfs.append(clf)

train_scores = [clf.score(X_train, y_train) for clf in clfs]
test_scores = [clf.score(X_test, y_test) for clf in clfs]

best_clf = clfs[test_scores.index(max(test_scores))]
y_pred = best_clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("After Pruning Accuracy:", accuracy)

# 绘制准确率随着剪枝参数的变化曲线
plt.figure(figsize=(10, 6))
plt.plot(ccp_alphas, train_scores, marker='o', label='Train', drawstyle="steps-post")
plt.plot(ccp_alphas, test_scores, marker='o', label='Test', drawstyle="steps-post")
plt.xlabel("CCP Alpha")
plt.ylabel("Accuracy")
plt.title("Accuracy vs. CCP Alpha for Decision Tree Pruning")
plt.legend()
plt.show()

在这里插入图片描述

5. 总结

本篇博客介绍了决策树的剪枝算法,包括预剪枝和后剪枝两种方法,以及决策树的损失函数(目标函数)。通过Python实现了预剪枝和后剪枝算法,并在相同的数据集上进行了比较。

预剪枝通过限制决策树的生长来防止过拟合,但可能会导致欠拟合。后剪枝是在决策树生成完成后,通过一定的方法对决策树进行剪枝,可以更好地提高模型的泛化能力。在实际应用中,需要根据具体问题的特点和数据集的情况选择合适的剪枝算法,并通过调参来优化模型性能。

决策树算法是一种广泛应用于分类和回归的机器学习算法,它基于树形结构对样本进行分类或预测。决策树算法的主要思想是通过一系列的判断来对样本进行分类或预测。在决策树中,每个节点表示一个属性或特征,每个分支代表该属性或特征的一个取值,而每个叶子节点代表一个分类或预测结果。 决策树算法的训练过程主要包括以下步骤: 1. 特征选择:根据某种指标(如信息增益或基尼系数)选择最优的特征作为当前节点的分裂属性。 2. 决策树生成:根据选择的特征将数据集分成若干个子集,并递归地生成决策树。 3. 剪枝:通过剪枝操作来提高决策树的泛化性能。 决策树算法的优点包括易于理解和解释、计算复杂度较低、对缺失值不敏感等。但是,决策树算法也存在一些缺点,如容易出现过拟合、对离散数据敏感等。 下面是一个决策树算法的案例:假设我们要根据一个人的年龄、性别、教育程度和职业预测其收入水平(高于或低于50K)。首先,我们需要将这些特征进行编码,将其转换为数值型数据。然后,我们可以使用决策树算法对这些数据进行训练,并生成一个决策树模型。最后,我们可以使用该模型对新的数据进行分类或预测。例如,根据一个人的年龄、性别、教育程度和职业,我们可以使用决策树模型预测该人的收入水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值