python实现神经网络梯度下降算法_python实现随机梯度下降(SGD)

使用神经网络进行样本训练,要实现随机梯度下降算法。这里我根据麦子学院彭亮老师的讲解,总结如下,(神经网络的结构在另一篇博客中已经定义):

def SGD(self, training_data, epochs, mini_batch_size, eta, test_data=None):

if test_data:

n_test = len(test_data)#有多少个测试集

n = len(training_data)

for j in xrange(epochs):

random.shuffle(training_data)

mini_batches = [

training_data[k:k+mini_batch_size]

for k in xrange(0,n,mini_batch_size)]

for mini_batch in mini_batches:

self.update_mini_batch(mini_batch, eta)

if test_data:

print "Epoch {0}: {1}/{2}".format(j, self.evaluate(test_data),n_test)

else:

print "Epoch {0} complete".format(j)

其中training_data是训练集,是由很多的tuples(元组)组成。每一个元组(x,y)代表一个实例,x是图像的向量表示,y是图像的类别。

epochs表示训练多少轮。

mini_batch_size表示每一次训练的实例个数。

eta表示学习率。

test_data表示测试集。

比较重要的函数是self.update_mini_batch,他是更新权重和偏置的关键函数,接下来就定义这个函数。

def update_mini_batch(self, mini_batch,eta):

nabla_b = [np.zeros(b.shape) for b in self.biases]

nabla_w = [np.zeros(w.shape) for w in self.weights]

for x,y in mini_batch:

delta_nabla_b, delta_nable_w = self.backprop(x,y)#目标函数对b和w的偏导数

nabla_b = [nb+dnb for nb,dnb in zip(nabla_b,delta_nabla_b)]

nabla_w = [nw+dnw for nw,dnw in zip(nabla_w,delta_nabla_w)]#累加b和w

#最终更新权重为

self.weights = [w-(eta/len(mini_batch))*nw for w, nw in zip(self.weights, nabla_w)]

self.baises = [b-(eta/len(mini_batch))*nb for b, nb in zip(self.baises, nabla_b)]

这个update_mini_batch函数根据你传入的一些数据进行更新神经网络的权重和偏置。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

本文标题: python实现随机梯度下降(SGD)

本文地址: http://www.cppcns.com/jiaoben/python/214682.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值