ToT被华为诺亚方舟实验室升级了,Forest-of-Thought:让LLM多路径推理的Prompt框架
原创 AI修猫Prompt AI修猫Prompt 2024年12月19日 07:02 北京
点击上方蓝字关注我
本文:3800字阅读 10分钟
当前LLM推理能力的局限
大语言模型(LLM)在自然语言处理领域取得了巨大突破,但在复杂推理任务上仍面临着显著挑战。现有的Chain-of-Thought(CoT)和Tree-of-Thought(ToT)等方法虽然通过分解问题或结构化提示来增强推理能力,但它们通常只进行单次推理过程,无法修正错误的推理路径,这严重限制了推理的准确性。当遇到复杂的数学问题或逻辑推理任务时,这些方法往往会陷入局部最优解而无法自我纠正。
为了突破这一瓶颈,来自华为诺亚方舟实验室的研究团队提出了一个创新的推理框架 - Forest-of-Thought(FoT)。这个框架通过集成多棵推理树,引入稀疏激活和动态自我纠正机制,显著提升了LLM的推理能力。本文将深入解析FoT框架的工作原理、实现细节及其在实际应用中的表现。