GPT-4o
Poe
这两张图表通过“信息集数目”和“信息集平均大小”两个维度,比较了不同游戏的复杂性。这些参数用于衡量游戏的策略空间和信息复杂度,主要用于分析游戏人工智能(AI)挑战的难度。
第一张图:表格内容解读
游戏 信息集数目 信息集平均大小
两人德州扑克(限注)
游戏 | 信息集数目 | 信息集平均大小 |
两人德州扑克(限注) | 101410^{14}1014 | 10310^3103 |
两人德州扑克(无限注) | 1016210^{162}10162 | 10310^3103 |
桥牌 | 106710^{67}1067 | 101510^{15}1015 |
麻将 | 1012110^{121}10121 | 104810^{48}1048 |
1
主要参数解释:
信息集数目:
定义:表示在游戏中可能出现的所有信息集合的总数。信息集合指的是玩家在某一局面下可观察到的所有可能信息。
含义:信息集数目越大,游戏的复杂度越高,因其可能性更多。
对比:
**两人德州扑克(无限注)**的数目最大(
1
0
162
10
162
),说明它的可能状态组合极其庞大。
桥牌的数目相对较少(
1
0
67
10
67
),但仍远大于限注德州扑克(
1
0
14
10
14
)。
麻将的数目(
1
0
121
10
121
)也非常庞大,远超过桥牌。
信息集平均大小:
定义:表示每个信息集合中平均包含的可能状态数。
含义:平均大小越大,意味着玩家在某一信息集合下需要应对的可能性更多。
对比:
麻将的平均大小最大(
1
0
48
10
48
),意味着玩家在某个局面下可能面对的状态非常多,这增加了游戏的复杂性。
桥牌的平均大小次之(
1
0
15
10
15
),也具有较高的状态复杂度。
**两人德州扑克(限注和无限注)**的平均大小很小(
1
0
3
10
3
),说明其单个局面下的复杂度相对较低。
第二张图:信息集数目与平均大小的视觉化
第二张图将第一张表格的数值用图形展示,横轴为信息集数目,纵轴为信息集平均大小。
图中解读:
横轴(信息集数目):从左到右,游戏的可能状态总数逐渐增加。
桥牌位于
1
0
67
10
67
,表明其可能的状态数目较大。
麻将和德州扑克无限注分别位于
1
0
121
10
121
和
1
0
162
10
162
,说明它们的状态空间更庞大。
德州扑克限注的状态数最小(
1
0
14
10
14
)。
纵轴(信息集平均大小):从下到上,玩家在某一局面下需要面对的可能状态越来越多。
**德州扑克(限注和无限注)**的平均大小最低(
1
0
3
10
3
),说明其在单一局面下的复杂度较低。
桥牌的平均大小中等(
1
0
15
10
15
),局面复杂度适中。
麻将的平均大小最高(
1
0
48
10
48
),其局面复杂度极高。
关键观察:
麻将:横轴和纵轴都处于极高位置,说明它是状态数和局面复杂度都极高的游戏。这使得麻将AI的开发非常困难。
桥牌:信息集数目适中,但平均大小较大,说明其局面复杂性较高。
德州扑克无限注:信息集数目最大,但平均大小较低,说明其状态数多,但单一局面复杂度小。
德州扑克限注:信息集数目和平均大小都较小,是相对简单的游戏。
总结
复杂性比较:
麻将和无限注德州扑克的总体复杂度最高,但麻将的局面复杂性更高。
桥牌在信息集数目和平均大小之间达到平衡。
限注德州扑克是复杂性最低的。
图表意义:
图表直观展示了不同游戏在信息状态空间上的差异,帮助理解游戏AI发展的难度。
信息集数目和平均大小的对比能反映每个游戏的局部复杂性和全局复杂性。