
勾股定理:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么。
仅用一张动态的赵爽弦图就可明白如何证明勾股定理——请看用动态数学软件GeoGebra制作的效果图:

这是如何操作的呢?请往下看:

复制教程图中的指令,粘贴到数学软件GeoGebra的按钮脚本里。具体见下图。

-----------------------啊K的手动分割线--------------------
- 这一操作是走了捷径的。
- 具体的分步操作请见动态的赵爽弦图(简易版)。
温馨提示:需输入的内容,可复制粘贴。
-------------------手动分割线2:细节修饰-------------------
设置线段颜色、线型、显示条件
进入线段c,b1,f,b3的属性——高级——显示条件,输入:α!= 0° && α != 90°

设置t1'三条边的标题:
- $textcolor{}Huge{a}$
- $textcolor{}Huge{b}$
- $textcolor{}Huge{c}$
【快速找t1'三边:线段指令以 t1' ) 结尾】

为使两个正方形更明显,作辅助线
J = B + (b - a, 0) , j = 线段(H, J)
设置线段 j为银灰色,线型为短划线,显示条件:α== 0°

可以一步一步显示的重点来啦!
文字与按钮
1.分别输入指令: k = 折线(H, J, E, F, H) , l = 折线(C, A, J, I, C),且设置线型与颜色

2.“重中之重”:
建立整数滑动条n【用来控制逐步显示】,输入指令【整段复制】:
text1 = 公式文本(如果(3 ≤ n < 5, "textcolor{blue}{a^2}", n ≟ 5, "textcolor{blue}{a^2}+textcolor{#006400}{b^2}", n ≟ 7, "textcolor{red}{c^2}", n ≟ 8, "textcolor{blue}{a^2}+textcolor{#006400}{b^2}=textcolor{red}{c^2}"))

n=滑动条[0,8,1]
3.“重中之重”:
创建按钮,标题为:演示,脚本为【整段复制】:
如果[n==8,赋值[n,0]]
赋值[n,n+1]
如果[n<6,赋值[α,0°]]
启动动画[α,n==6]

4.“重中之重”:
设置 k , l 的显示条件分别为:2 ≤ n ≤ 5 , 4 ≤ n ≤ 5;图层:都是1

5.设置α的速度为:5 ;隐藏所有点
【隐藏/显示快捷键:Ctrl键+G】

恭喜你!大功告成!
单击演示按钮,看看效果吧!
如需word版教程,请关注公众号GeoGebra数学(回复赵爽弦图即可获取)。

感谢提醒,现给小正方形标示边长。
边长a的显示
创建文本:Huge{a} ,显示条件为:n < 6 ,位置:中点(b_3)
