解分式方程(分式化简)
分式化简(求值)
(1)综合运用多项式的因式分解、整式运算、分式的符号法则、分式的约分和通分等知识,是形成清晰的运算思路和运算技能的重要途径。
(2)解答分式运算问题时:当分子、分母是多项式时,先进行分解因式;有加减时进行通分,有除法时利用倒数的原理转化成乘法问题;进行约分,化成最简形式;有括号先计算括号内的。
(3)对于化简求值问题,必须严格遵循题目的要求,先把分式化简成最简分式的形式,然后再代入进行求值,如果直接代入计算的话,就不可能得分了。另外在代入求值前需注意代入的值是否能使原分式有意义。
解分式方程的基本方法和思路
(1)一般步骤:去分母,将分式方程转化为整式方程;解所得的整式方程(一般为一元一次方程);验根作答。
(2)解分式方程时,主要是根据等式的基本性质去分母,要注意必须是方程两边的每一项都要乘各分母的最简公分母,尤其不能忘记方程中的常数。
(3)解分式方程,在求出结果后还应注意验根,以确保原方程的解有意义。
(4)注意区分解分式方程与分式化简,解分式方程是根据等式的基本性质,分式化简题不能去分母。
解不等式组
(1)一般步骤:求出不等式组中各个不等式的解集;把它们分别表示在数轴上;利用数轴确定不等式组的解集。
(2)几种常见的不等式组的解集:设a
解分式方程(分式化简)练习
(点击图片放大查看)
做完题目 再看答案

— END —
声明:本文由学林教育研究院原创编辑,转载请注明来源。 责任编辑:崔娜扫
码
关
注
您的点赞是我们进步的动力!
↘↘↘