python决策树二分类_python实现决策树分类(2)

本文介绍如何使用Python实现决策树进行二分类,以红酒和白酒数据集为例,通过UCI数据库获取12个特征的数据,并进行训练与测试,最终得出约0.7的分类准确率。
摘要由CSDN通过智能技术生成

在上一篇文章中,我们已经构建了决策树,接下来可以使用它用于实际的数据分类。在执行数据分类时,需要决策时以及标签向量。程序比较测试数据和决策树上的数值,递归执行直到进入叶子节点。

这篇文章主要使用决策树分类器就行分类,数据集采用UCI数据库中的红酒,白酒数据,主要特征包括12个,主要有非挥发性酸,挥发性酸度, 柠檬酸, 残糖含量,氯化物, 游离二氧化硫, 总二氧化硫,密度, pH,硫酸盐,酒精, 质量等特征。

下面是具体代码的实现:

#coding :utf-8

'''

2017.6.26 author :Erin

function: "decesion tree" ID3

'''

import numpy as np

import pandas as pd

from math import log

import operator

import random

def load_data():

red = [line.strip().split(';') for line in open('e:/a/winequality-red.csv')]

white = [line.strip().split(';') for line in open('e:/a/winequality-white.csv')]

data=red+white

random.shuffle(data) #打乱data

x_train=data[:800]

x_test=data[800:]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值