python 游戏屏蔽了模拟键盘_单机游戏下载:专业模拟飞行11 专业飞行模拟11 v11.41r1|容量62GB|官方简体中文|支持键盘.鼠标...

《专业飞行模拟11》是一款由Laminar Research制作的模拟飞行游戏,提供逼真的航空电子设备和多样的飞机选择。游戏在Steam上获得特别好评,对配置有一定要求。若遇到Python游戏屏蔽模拟键盘的问题,可寻求解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

272b991c70e33864a315ed7b2d73ac20.png

 专业模拟飞行11

6869326fb0c543332a981fafe20d6c49.png

7d9a5cbeacd21dc1e60286c3027a767a.png

游戏介绍

《专业飞行模拟11(X-Plane 11)》是Laminar Research制作发行的一款开放世界拟真模拟飞行游戏。距离上个作品发布已经有5年多时间,《专业飞行模拟》终于推出了系列新作《专业飞行模拟11》。在本作中,游戏采用全新的引擎设计,加入直观的用户界面,现实的航空电子设备,新的照明、声音、爆炸效果,更多的飞机、城市选择,为玩家打造更真实的飞行模拟。

steam 特别好评!
中文名: 专业模拟飞行11
名称: X-Plane 11
类型: 模拟
开发商: Laminar Research
发行商: Laminar Research
发行日期: 2017年3月30日

配置要求

最低配置:
需要 64 位处理器和操作系统
操作系统: Windows 7, 8.1, or 10, 64-bit
处理器: Intel Core i3, i5, or i7 CPU with 2 or more cores, or AMD equivalent
内存: 8 GB RAM
显卡: DirectX 11-capable video card from NVIDIA or AMD w/512 MB VRAM
DirectX 版本: 11
存储空间: 需要 20 GB 可用空间
声卡: Default

推荐配置:
需要 64 位处理器和操作系统
操作系统: Windows 7, 8.1, or 10, 64-bit
处理器: Intel Core i5 6600K at 3.5 ghz or faster
内存: 16 GB RAM
显卡: DirectX 12-capable video card from NVIDIA or AMD w/4 GB VRAM
DirectX 版本: 12
网络: 宽带互联网连接
存储空间: 需要 65 GB 可用空间
声卡: Default

游戏截图

c59295575203985325e844cc917e5fef.png c0272af5813559e8fe45a5b7173a1e25.png fa26e3cee4db706e3cf0b35b7728857c.png ef854053b99d82f5eede480c1898ba24.png 6f07d373f9e0843304c035894ad1c495.png 966c0ff8ad66396cf2ed46cf8c0d9c9e.png 3e5154b8a3dce9d17a0b03c998372c6e.png 16c1a59785cf6dd53e32e5265f7bd76b.png 0e51e07b44648f55c1556c3c163a6c58.png 3cb0616079830074a171ef6c9145daac.png

519359c47da02a76d259010a634d0a85.png

常见问题

1、怎么下载?

bgjm

2、解压相关以及工具获取

一、手机zachiver解压,电脑好压或者7Z。

二、part类文件解压:将part文件都下载下来并放在一个文件夹里,解压part1

三、rar,7z为后缀的文件可直接解压,如果是别的后缀名,请先将后缀改成rar或者7z再解压

四、下载前请先保存到自己的网盘再下载,否则会出现压缩包损坏等问题,切记不可在线解压!不可在线解压!不可在线解压!(会炸你信不信)

3、如需百度网盘SVIP账号,请移步

http://dw.kxlme.com/gjx/bdxz/

4、关于其他游戏的疑难杂症

进群!进群!进群!1090285293~!

特别声明

    本公众号内容来源于互联网及群友分享,所有内容均免费。

请勿商业用途,否则后果自负。

若您需要商业运营或用于其他商业活动

请您购买正版授权并合法使用。

本公众号提供的所有资源仅供参考学习使用

版权归原著所有

禁止下载本站资源参与商业和非法行为

请在24小时之内自行删除!

最后浪费你一秒钟时间

阅读完本文,如果您觉得游戏好玩的话,能否动动小手戳一下文章底部的小卡片,这是我们赖以生存的根本,感激不尽❤公众号会将免费进行到底,感谢亲们的支持!

4d298c4a77f30bdf820c47e161126e08.gif(小声bb,打卡的人都是帅锅)

2c9996d8b7fd90227660bc52ea61e9a4.png

请提前复制好提取码,文章末获取地址!

大家别忘了每日一次的底部打卡哦,

这个是本公众号生存下去的基本。

感恩每一位玩家

7dc7ea3c29e471e926d70126c668f0b7.png
Traceback (most recent call last): File "D:\miniconda\envs\yolo1\lib\threading.py", line 932, in _bootstrap_inner self.run() File "D:\miniconda\envs\yolo1\lib\threading.py", line 870, in run self._target(*self._args, **self._kwargs) File "D:\Users\a\Desktop\qq_3045834499\yolov8-42\ultralytics\utils\plotting.py", line 992, in plot_images 1/100 1.01G 2.671 4.054 1.413 243 640: 0%| | 1/1365 [00:11<4:19:25, 11.41s/it] mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init File "D:\miniconda\envs\yolo1\lib\site-packages\numpy\core\numeric.py", line 343, in full Traceback (most recent call last): File "D:\Users\a\Desktop\qq_3045834499\yolov8-42\42_demo\start_train.py", line 17, in <module> a = empty(shape, dtype, order) numpy.core._exceptions.MemoryError: Unable to allocate 4.69 MiB for an array with shape (1280, 1280, 3) and data type uint8 results = model.train(data='A_my_data.yaml', epochs=100, imgsz=640, device=[0,], workers=0, batch=4, cache=True, amp=False) # 开始训练 File "D:\Users\a\Desktop\qq_3045834499\yolov8-42\ultralytics\engine\model.py", line 811, in train self.trainer.train() File "D:\Users\a\Desktop\qq_3045834499\yolov8-42\ultralytics\engine\trainer.py", line 208, in train self._do_train(world_size) File "D:\Users\a\Desktop\qq_3045834499\yolov8-42\ultralytics\engine\trainer.py", line 367, in _do_train for i, batch in pbar: File "D:\miniconda\envs\yolo1\lib\site-packages\tqdm\std.py", line 1195, in __iter__ for obj in iterable: File "D:\Users\a\Desktop\qq_3045834499\yolov8-42\ultralytics\data\build.py", line 48, in __iter__ yield next(self.iterator) File "D:\miniconda\envs\yolo1\lib\site-packages\torch\utils\data\dataloader.py", line 517, in __next__ data = self._next_data() File "D:\miniconda\envs\yolo1\lib\site-packages\torch\utils\data\dataloader.py", line 557, in _next_data data = self._dataset_fetcher.fetch(index
最新发布
04-04
<think>嗯,用户在使用YOLOv8进行图像处理时遇到了内存不足的问题,具体是numpy报MemoryError,还有ultralytics的plotting.py无法分配内存。我需要帮他们找到解决方案。 首先,我应该考虑内存不足的常见原因。可能的情况包括图像太大、批量处理时批次过大、内存泄漏,或者硬件本身的限制。用户提到的是YOLOv8,所以可能需要调整模型或数据处理方式。 第一个可能的解决方法是降低输入图像的分辨率。YOLOv8默认可能使用高分辨率,比如640x640,这会占用较多内存。建议用户将图像缩小,比如调整到416x416,看看是否有效。同时,在预处理时使用正确的插值方法,比如双线性插值,避免引入其他问题。 接下来是减少批量大小。如果在推理时批量处理多个图像,减少batch size可以显著降低内存占用。需要检查代码中DataLoader或预测时的batch_size参数,适当调小。 然后,检查代码是否有内存泄漏。长时间运行的脚本如果没有正确释放资源,可能会导致内存累积。建议用户使用内存分析工具,比如tracemalloc,或者手动检查是否有不必要的变量驻留在内存中,特别是大张量或图像数据。 使用生成器或流式处理也是一个方法。如果处理大量图像,逐张读取和处理,而不是一次性加载到内存,可以减轻压力。用Python的生成器或者分块处理数据,避免一次性占用太多内存。 升级硬件或优化环境方面,增加虚拟内存可能有帮助,尤其是在Windows系统中调整页面文件大小。另外,确保使用的库是最新版本,比如Ultralytics YOLO库,因为新版本可能优化了内存使用。如果问题出在库的某个版本,可能需要回退或升级。 模型优化方面,可以尝试简化模型结构,比如使用更小的YOLOv8版本(如yolov8s.pt或yolov8n.pt)。另外,半精度推理(FP16)可以减少内存占用,检查是否启用了这个选项。 关闭实时绘制或日志功能也可能有用。在推理时禁用plotting.py中的实时显示,保存结果到文件而不是实时渲染,可以减少内存消耗。此外,调整日志级别,减少不必要的输出,也能释放一些资源。 最后,如果所有方法都试过了,可能需要考虑升级硬件,比如增加物理内存,或者使用云服务来处理大规模任务。同时,用户提到的引用中有一个关于修改activation.py的代码,可能与激活函数的内存使用有关,但不确定是否适用当前问题,需要进一步确认。 总结下来,需要分步骤建议用户从调整输入、批量大小、代码优化、环境设置等多个方面尝试解决内存问题,并提醒他们注意版本兼容性和资源管理。</think>针对使用YOLOv8进行图像处理时出现的$numpy$内存不足问题(MemoryError),以下是分步解决方案及原理分析: --- ### **1. 降低输入分辨率** YOLOv8默认输入分辨率较高(如$640 \times 640$),可通过缩小图像尺寸减少内存占用: ```python from ultralytics import YOLO model = YOLO('yolov8n.pt') results = model.predict(source='image.jpg', imgsz=416) # 降低分辨率至416x416 ``` - **原理**:图像分辨率$N$与内存消耗量$M$近似满足$M \propto N^2$,缩小尺寸可显著减少内存需求[^4]。 - **注意**:需在预处理时保持图像插值方法(如`bilinear`)以避免精度损失。 --- ### **2. 减少批量大小(Batch Size)** 在数据加载或推理时减少同时处理的图像数量: ```python results = model.predict(source='dataset/', batch=4) # 默认batch=16,改为4 ``` - **原理**:批量数据内存占用为单张图像的$batch\_size$倍,调整后内存需求线性降低。 --- ### **3. 释放未使用的内存** 强制清理Python缓存和未引用变量: ```python import gc import torch del results # 删除大对象 torch.cuda.empty_cache() # 清理GPU缓存(若使用GPU) gc.collect() # 触发垃圾回收 ``` --- ### **4. 使用生成器(Generator)处理数据流** 逐张读取图像避免一次性加载: ```python import cv2 from tqdm import tqdm def image_generator(image_paths): for path in image_paths: yield cv2.imread(path) # 逐张读取 for img in tqdm(image_generator(image_list)): results = model.predict(img) ``` --- ### **5. 升级硬件或优化环境** - **增加虚拟内存**(适用于Windows):通过系统设置扩展页面文件大小。 - **升级依赖库**:确保`ultralytics`和`numpy`为最新版本: ```bash pip install --upgrade ultralytics numpy ``` --- ### **6. 启用半精度推理(FP16)** 使用FP16减少张量内存占用: ```python results = model.predict(source='image.jpg', half=True) # 启用半精度 ``` - **原理**:FP16将浮点数位数从32位减至16位,内存占用降低约50%。 --- ### **7. 关闭实时绘制功能** 禁用`plotting.py`的实时渲染以节省内存: ```python results = model.predict(source='image.jpg', show=False) # 关闭实时显示 ``` --- ### **常见错误排查** 若报错指向`numpy.int`相关问题(如引用[^1]),需检查代码中是否使用了废弃的`numpy.int`类型,替换为`int`或`np.int32`。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值