matlab解常微分方程,Matlab中解常微分方程的ode45

ode是专门用于解微分方程的功能函数,他有ode23,ode45,ode23s等等,采用的是Runge-Kutta算法。ode45表示采用四阶,五阶runge-kutta单步算法,截断误差为(Δx)^3。解决的是Nonstiff(非刚性)的常微分方程.是解决数值解问题的首选方法,若长时间没结果,应该就是刚性的,换用ode23来解.其他几个也是类似的用法

使用方法

[T,Y] = ode45(odefun,tspan,y0)

odefun 是函数句柄,可以是函数文件名,匿名函数句柄或内联函数名

tspan 是区间

[t0 tf] 或者一系列散点[t0,t1,...,tf]

y0 是初始值向量

T 返回列向量的时间点

Y 返回对应T的求解列向量

[T,Y] = ode45(odefun,tspan,y0,options)

options 是求解参数设置,可以用odeset在计算前设定误差,输出参数,事件等

[T,Y,TE,YE,IE] =ode45(odefun,tspan,y0,options)

每组(t,Y)之产生称为事件函数。每次均会检查是否函数等于零。并决定是否在零时终止运算。这可以在函数中之特性上设定。例如以events 或@events产生一函数。[value, isterminal,direction]=events(t,y)其中,value(i)为函数之值,isterminal(i)=1时运算在等于零时停止,=0时继续;direction(i)=0时所有零时均需计算(默认值), +1在事件函数增加时等于零, -1在事件函数减少时等于零等状况。此外,TE, YE, IE则分别为事件发生之时间,事件发生时之答案及事件函数消失时之指针i。

sol =ode45(odefun,[t0 tf],y0...)

sol 结构体输出结果

应用举例

1 求解一阶常微分方程

程序:

odefun=@(t,y) (y+3*t)/t^2; %定义函数

tspan=[1 4]; %求解区间

y0=-2; %初值

[t,y]=ode45(odefun,tspan,y0);

plot(t,y) %作图

title('t^2y''=y+3t,y(1)=-2,1

legend('t^2y''=y+3t') xlabel('t')

ylabel('y') % 精确解

% dsolve('t^2*Dy=y+3*t','y(1)=-2')

% ans =

% (3*Ei(1) - 2*exp(1))/exp(1/t) - (3*Ei(1/t))/exp(1/t)

7154347_1.jpg

2 求解高阶常微分方程

关键是将高阶转为一阶,odefun的书写.

F(y,y',y''...y(n-1),t)=0用变量替换,y1=y,y2=y'...注意odefun方程定义为列向量

dxdy=[y(1),y(2)....]

程序:

function Testode45

tspan=[3.9 4.0]; %求解区间

y0=[2 8]; %初值

[t,x]=ode45(@odefun,tspan,y0);

plot(t,x(:,1),'-o',t,x(:,2),'-*')

legend('y1','y2')

title('y'' ''=-t*y + e^t*y'' +3sin2t')

xlabel('t') ylabel('y')

function y=odefun(t,x)

y=zeros(2,1); % 列向量

y(1)=x(2);

y(2)=-t*x(1)+exp(t)*x(2)+3*sin(2*t);

end

end

7154347_2.jpg

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值