python对象模型映射_看例子,学 Python(三)

看例子,学 Python(三)

创建一个目录 myutil,把 mymath.py 挪到里面,再添加一个空文件 __init__.py:

myutil/

__init__.py

mymath.py

myutil 便是一个包(package)。

import

最直接的用法:

>>> import myutil.mymath

>>> myutil.mymath.fac(4)

24

缺点是调用 fac 时太长,包和模块作为前缀都要写全。但是写成 import myutil.mymath.fac 也是不对的。

通过 import 的语法(syntax):

import ..

可以看出:

最后一项(item)可以是包也可以是模块,前面的必须是包;

最后一项不可以是类、函数或变量的定义。

根据语法来看,可以 import 一个包:

>>> import myutil

>>> help(myutil)

...

但是这样并没有什么实际用处,因为无法就此调用具体的函数(类、变量):

>>> myutil.mymath.fac(4)

Traceback (most recent call last):

File "", line 1, in

AttributeError: module 'myutil' has no attribute 'mymath'

from...import

如果要避免调用时带着一串前缀,可以用 from...import:

>>> from myutil.mymath import fac

>>> fac(4) # 不再需要前缀

24

一次 import 多个时以逗号分割:

>>> from myutil.mymath import fib, fac

一次 import 所有:

>>> from myutil.mymath import *

from...import... 避免了前缀,但是也污染了名字,使用时需权衡。

高阶函数

高阶函数(higher-order)就是操作或返回其它函数的函数。

下面是几个经典的高阶函数,其它稍微函数式一点的语言里一般也有。

reduce(规约)

用 reduce 重写阶乘:

import operator, functools

def fac(n):

return functools.reduce(operator.mul, range(1, n+1))

用 reduce 求和:

def sum(n):

return functools.reduce(operator.add, range(1, n+1))

Python 的 reduce 就相当于 C++ 的 accumulate(C++17 已经新增 reduce)。

std::vector v{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

int sum = std::accumulate(v.begin(), v.end(), 0); // 求和

int product = std::accumulate(v.begin(), v.end(), 1, std::multiplies()); // 求积

map(映射)

>>> list(map(bool, [None, 0, "", u"", list(), tuple(), dict(), set(), frozenset()]))

[False, False, False, False, False, False, False, False, False]

None、0、空字符串、以及没有元素的容器对象都可视为 False,反之为 True。

filter(过滤)

>>> list(filter(bool, [None, 0, "", 1]))

[1]

数据模型

== vs. is

== 判断值是否相等,is 判断两个变量是否为同一个对象。

这就好像 Java 里的 == 和 equals 一样。

下面是一些例子:

>>> a, b = 1, 1

>>> a == b

True

>>> a is b

True

a == b 比较好理解,a is b 是因为 Python 对整数做了优化,a 和 b 都指向同一个预先分配的对象(其值为 1)。

可以理解为 is 比较的是对象的内存地址。

内建函数 id() 返回对象的唯一标识,可以理解为内存地址。

>>> id(a), id(b)

(35169392, 35169392)

甚至可以拿到一个对象的引用计数(reference count):

>>> import sys

>>> sys.getrefcount(a)

99

>>> sys.getrefcount(b)

99

引用计数为 99 有点意外,其实是因为很多装载的内建模块都用到了整数 1。

不妨看看其它整数如何:

>>> sys.getrefcount(0)

169

>>> sys.getrefcount(255)

4

对 Python 来说,变量只是名字,它的类型和值取决于它所绑定的对象。我们可以把 a b 绑定到其它对象:

>>> a, b = "hello", "hello"

>>> a is b

True

同样,a is b 是因为 Python 对字符串做了优化。

值得一提的是,这种优化(也即引用计数)可能只针对 CPython,对于 Python 的其它实现可能就不是这样了。你的程序不该依赖于这些特定于解释器的实现。

整数和字符串有一个共同点,即它们都是不可变的(immutable),现在来看看可变对象,比如列表:

>>> c, d = [a, b], [a, b]

>>> c == d

True

>>> c is d

False

可见虽然 c 和 d 具有相等的值,但对象是不同的两个。

这些就是 Python 的数据模型(Data Model),虽然不是全部。

对象

Python 的每一个对象(object)都有以下三个部分:

身份(identity)

类型(type)

值(value)

身份:

不可改变(unchangeable)(一旦对象创建了就不会改变)

对应于内存地址

通过操作符 is 进行比较: a is b

函数 id() 返回对象唯一的整形标识(内存地址)

类型:

不可改变(unchangeable)

函数 type() 返回对象类型

值:

可变的(mutable):字典,列表

不可变的(immutable):数字,字符串,元组

最后,对象不会被显式地销毁(explicitly destroyed)。

对 CPython 来说,对象由引用计数管理,计数为 0 时对象会自动销毁。

练习

最后留一道练习。

给定:

>>> c = []

>>> d = []

>>> c is d

False

请问:

>>> e = f = []

>>> e is f

???

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值