构建基于wine数据集的svm分类模型_白酒品质项目分析(基于SVM算法)

该博客介绍了如何利用UCI数据库的wine数据集建立基于SVM的支持向量机模型,对白酒品质进行分类。作者将品质分为bad、mid、good三个等级,并展示了模型预测结果,分析了模型的预测精度。通过比较两个模型,得出第二个模型的准确率更高(0.8732)。
摘要由CSDN通过智能技术生成

c54a2f90c12cbcd4dfd679741f78a2e8.png

数据来源:UCI数据库

数据连接:http://archive.ics.uci.edu/ml/datasets/Wine+Quality

UCI数据库中共12个变量,其中quality为结果变量,其他变量为特征变量,白酒品质分为10个等级(1-10),本数据集中有3至9共7个等级,为方便分析我们将白酒品质分为三个等级,品质为3、4、5的为“bad”,品质6为“mid”,品质7、8、9为“good”。

变量说明:

408144a380244add3f450291eef736e5.png
install.packages("e1071") #下载安装e1071软件包
install.packages("readxl") #下载安装readxl软件包
library(e1071)  #加载e1071软件包
library(readxl) #加载readxl软件包

获取数据集


 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值