
本文是数学分析复习系列第(3)篇文章. 上一篇文章:
Fiddie:数分笔记(2)——6种数项级数的收敛性证明的基本方法
Fiddie:数学分析复习(1)——函数项级数与广义积分计算zhuanlan.zhihu.com参考书:裴礼文、梅加强、北大数学分析习题集.
主要的广义积分敛散性证明方法如下:
- 套定义验证
- 比较判别法、等价无穷小
- Cauchy准则
- Dirichlet判别法
- Abel判别法
另外本文还有用Cauchy准则来处理广义积分有关的证明题的例题总结.
1 广义积分的定义
定义1.1[无穷积分]如果在任意有限区间
都是Riemann可积, 且极限
存在, 则把无穷积分定义为
![]()
否则称无穷积分是发散的.
此外,
这与Cauchy主值积分不同:
广义积分与Riemann积分有类似性质, 运算法则(分部积分、变量替换等)可以推广过来.
定义1.2 [瑕积分]如果在任意有限区间
都是Riemann可积, 且极限
存在, 则把瑕积分定义为
![]()
否则称无穷积分发散.
例1.1 无穷积分当
时, 该无穷积分收敛; 当
例1.2 瑕积分时, 该无穷积分发散.
当
时, 该瑕积分收敛; 当
例1.3时, 该瑕积分发散.
例1.4![]()
![]()
如果被积函数
定理1.5 设则无穷积分
收敛当且仅当
是
的有界函数.
2 比较判别法与等价无穷小
定理2.1 设这个不等式对充分大的x都成立就行了). 则当无穷积分为常数,(
收敛时, 无穷积分
也收敛. 当无穷积分
发散时, 无穷积分
发散. 瑕积分的结果类似.
在比较判别法中, M的寻找可以用极限去找. 如果极限
- (1) 当
时, 积分
与
同敛散.
- (2) 当
时, 如果
收敛, 则
也收敛.
- (3) 当
时, 如果
发散, 则
也发散.
注:对瑕积分有类似结论..
例2.2 判断积分的敛散性.
提示:无. QED
例2.3 积分是发散的.
证明:注意到
且
例2.4 积分是收敛的.
证明:
而
则
并注意到
3 用Cauchy准则验证收敛性
定理3.1 [Cauchy准则]在
上的积分收敛的充分必要条件是:
当
时,
![]()
例3.2 积分是收敛的.
证明:我们只需要看被积函数在
则
因此积分是收敛的. QED
注:f在
例3.3 积分
证明:【方法一】只需要考虑
固定m, 取
因此原积分是发散的. QED
【方法二】(比较判别法). 由于
注:方法二的技巧在例4.3、例6.5也用到了. 也就是说当
4 Dirichlet判别法
定理4.1 [Dirichlet判别法]设在
有界, 函数
在
中单调, 且
则积分
收敛.
证明:设
又
由Cauchy准则, 积分
例4.2 积分是收敛的.
证明:
在0处可以用等价无穷小来处理:
在
注:当
例4.3是条件收敛的.
证明:收敛性: 对
不绝对收敛: 注意到
取
由Cauchy准则, 原积分不是绝对收敛. QED
例4.4 [裴礼文, 4.5.8题]设在
上可微, 且
时,
单调递增趋于
则
与
均收敛.
证明:以第一个为例, 注意到
由于
有界, 由Dirichlet判别法可知积分收敛. QED
5 Abel判别法
定理5.1 [Abel判别法]如果广义积分收敛, 函数
在
中单调有界, 则积分
收敛.
证明:设
由积分第二中值定理,
由Cauchy准则, 积分
注:上面证明步骤与Dirichlet判别法相似. 事实上可以直接用Dirichlet判别法推导Abel判别法:不妨设
收敛. QED
例5.2 设则积分
收敛.
证明:对
例5.3 积分收敛.
证明:对
注:由这些例子可以知道, Abel判别法与Dirichlet判别法没什么很大的不同, 所以只需要牢记Dirichlet判别法即可.
6 综合问题
例6.1 设在
上广义可积, 若
在
中一致连续, 则
![]()
证明:(反证)若
因此
例6.2 设在
中连续可导, 若
与
都收敛, 则
![]()
证明:(反证)若
由Cauchy准则,
例6.3 设在
中单调递减, 且
收敛. 则
![]()
证明:
因此
例6.4 设当
时单调递减趋于0, 且
收敛. 则
![]()
证明:和例6.3差不多, so easy.
例6.5 设在
上均可积, 若
收敛, 且
证明
且
收敛.
证明:(1)(反证)若
(2)
由Cauchy准则,
例6.6 [裴礼文, 4.5.9题]设为连续实值函数, 对所有
, 有
且
证明:
![]()
提示:把积分区间拆成
例6.7 [北大, 10.1.7题]若为周期函数,
收敛, 则
![]()
提示:无.