积分上下限无穷_数分笔记——5种广义积分敛散性的基本方法

本文介绍了数分中处理积分上下限为无穷的广义积分的5种收敛性判别方法,包括广义积分定义、Cauchy准则、Dirichlet判别法、Abel判别法及综合问题。通过比较判别法、等价无穷小以及具体例题,详细阐述了如何判断广义积分的敛散性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

f269e61c1eca94f9df19f116d0ad1786.png

本文是数学分析复习系列第(3)篇文章. 上一篇文章:

Fiddie:数分笔记(2)——6种数项级数的收敛性证明的基本方法

Fiddie:数学分析复习(1)——函数项级数与广义积分计算​zhuanlan.zhihu.com

参考书:裴礼文、梅加强、北大数学分析习题集.

主要的广义积分敛散性证明方法如下:

  1. 套定义验证
  2. 比较判别法、等价无穷小
  3. Cauchy准则
  4. Dirichlet判别法
  5. Abel判别法

另外本文还有用Cauchy准则来处理广义积分有关的证明题的例题总结.

1 广义积分的定义

定义1.1[无穷积分]如果
在任意有限区间
都是Riemann可积, 且极限
存在, 则把无穷积分定义为

否则称无穷积分是发散的.

此外,

这与Cauchy主值积分不同:

广义积分与Riemann积分有类似性质, 运算法则(分部积分、变量替换等)可以推广过来.

定义1.2 [瑕积分]如果
在任意有限区间
都是Riemann可积, 且极限
存在, 则把瑕积分定义为

否则称无穷积分发散.
例1.1 无穷积分
时, 该无穷积分收敛; 当
时, 该无穷积分发散.
例1.2 瑕积分
时, 该瑕积分收敛; 当
时, 该瑕积分发散.
例1.3
例1.4

如果被积函数

恒大于0, 我们有如下结论.
定理1.5
则无穷积分
收敛当且仅当
的有界函数.


2 比较判别法与等价无穷小

定理2.1
为常数,(
这个不等式对充分大的x都成立就行了). 则当无穷积分
收敛时, 无穷积分
也收敛. 当无穷积分
发散时, 无穷积分
发散. 瑕积分的结果类似.

在比较判别法中, M的寻找可以用极限去找. 如果极限

存在, 则
  • (1) 当
    时, 积分
    同敛散.
  • (2) 当
    时, 如果
    收敛, 则
    也收敛.
  • (3) 当
    时, 如果
    发散, 则
    也发散.

注:对瑕积分有类似结论..

例2.2 判断积分
的敛散性.

提示:无. QED

例2.3 积分
是发散的.

证明:注意到

于是0不是瑕点, 1是瑕点. 我们只需要考虑
由于

则积分
同敛散. 则原积分是发散的. QED
例2.4 积分
是收敛的.

证明:

都是瑕点. 把积分区间拆成
(在
区间内, 出现瑕点的地方是
而在
区间内, 出现瑕点的地方是
没出现瑕点的地方可以视作有限数)注意

收敛. 另一方面,

并注意到

收敛. QED

3 用Cauchy准则验证收敛性

定理3.1 [Cauchy准则]
上的积分收敛的充分必要条件是:
时,
例3.2 积分
是收敛的.

证明:我们只需要看被积函数在

的积分即可. 作变量代换

因此积分是收敛的. QED

注:f在

积分存在不能推出
需要添加条件. 详见第6小节.

例3.3 积分

是发散的.

证明:【方法一】只需要考虑

的一个周期. 由于

固定m, 取

因此原积分是发散的. QED

【方法二】(比较判别法). 由于

由例3.2, 积分
是收敛的, 但是积分
发散, 则原积分发散. QED

注:方法二的技巧在例4.3、例6.5也用到了. 也就是说当

时, 根据幂函数
的性质, 必有
利用这个技巧可以
去掉绝对值.


4 Dirichlet判别法

定理4.1 [Dirichlet判别法]
有界, 函数
中单调, 且
则积分
收敛.

证明:

时,
积分第二中值定理, 当
时,

由Cauchy准则, 积分

收敛. QED
例4.2 积分
是收敛的.

证明:

都是瑕点.

在0处可以用等价无穷小来处理:

则积分
敛散性相同, 由
可知
收敛.

处, 可以用Dirichlet判别法. 由于积分
有界(不超过2), 而
单调递减趋于0, 则由Dirichlet判别法可知积分收敛. QED

注:

时该积分条件收敛(取
验证, 仿照例3.3), 当
时该积分绝对收敛(直接放缩
用比较判别法即可).
例4.3
是条件收敛的.

证明:收敛性: 对

用Dirichlet判别法.

不绝对收敛: 注意到

. 于是(利用不等式
)

由Cauchy准则, 原积分不是绝对收敛. QED

例4.4 [裴礼文, 4.5.8题]
上可微, 且
时,
单调递增趋于
均收敛.

证明:以第一个为例, 注意到

由于

单调递减趋于0, 且

有界, 由Dirichlet判别法可知积分收敛. QED

5 Abel判别法

定理5.1 [Abel判别法]如果广义积分
收敛, 函数
中单调有界, 则积分
收敛.

证明:

由f积分收敛, 则

由积分第二中值定理,

由Cauchy准则, 积分

收敛. QED

注:上面证明步骤与Dirichlet判别法相似. 事实上可以直接用Dirichlet判别法推导Abel判别法:不妨设

单调且收敛于C, 则
单调趋于0. 由于广义积分
收敛, 则必然
关于
有界, 由Dirichlet判别法可知积分
收敛. 因此

收敛. QED

例5.2
则积分
收敛.

证明:

用Abel判别法. (Dirichlet判别法也行, 因为
单调递减趋于0). QED
例5.3 积分
收敛.

证明:

用Abel判别法. QED

注:由这些例子可以知道, Abel判别法与Dirichlet判别法没什么很大的不同, 所以只需要牢记Dirichlet判别法即可.

6 综合问题

例6.1
上广义可积, 若
中一致连续, 则

证明:(反证)若

(其中可以让
充分大), 使得
不妨设
由一致连续性, 对于
时,
因此当
时, 有:

因此

由Cauchy准则,
上的广义积分发散, 矛盾. QED
例6.2
中连续可导, 若
都收敛, 则

证明:(反证)若

时,
由于
收敛, 则对
存在充分大的
使得

由Cauchy准则,

发散, 矛盾. QED
例6.3
中单调递减, 且
收敛. 则

证明:

单调递减趋于0, 则
由Cauchy准则,
时有

因此

QED
例6.4
时单调递减趋于0, 且
收敛. 则

证明:和例6.3差不多, so easy.

例6.5
上均可积, 若
收敛, 且
证明
收敛.

证明:(1)(反证)若

不妨设
时,
从而
这会导致
收敛矛盾. 因此只能

(2)

时,
从而

由Cauchy准则,

收敛. QED
例6.6 [裴礼文, 4.5.9题]
为连续实值函数, 对所有
, 有
证明:

提示:把积分区间拆成

例6.7 [北大, 10.1.7题]
为周期函数,
收敛, 则

提示:无.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值