首先导入scipy的包 from scipy.io import loadmat
然后读取 m = loadmat("F:/__identity/activity/论文/data/D001.mat")
注意这里m是一个dict数据结构
>>> m
{"__header__": b"MATLAB 5.0 MAT-file, Platform: PCWIN, Created on: Mon Aug 15 22:16:43 2011", "__globals__": [], "labels": array([[1],
[3],
[4],
...,
[4],
[3],
[4]], dtype=uint8), "data": array([[ 1. , 0.35 , 0.265 , ..., 0.0995, 0.0485, 0.07 ],
[ 2. , 0.53 , 0.42 , ..., 0.2565, 0.1415, 0.21 ],
[ 1. , 0.44 , 0.365 , ..., 0.2155, 0.114 , 0.155 ],
...,
[ 1. , 0.59 , 0.44 , ..., 0.439 , 0.2145, 0.2605],
[ 1. , 0.6 , 0.475 , ..., 0.5255, 0.2875, 0.308 ],
[ 2. , 0.625 , 0.485 , ..., 0.531 , 0.261 , 0.296 ]]), "__version__": "1.0"}
>>> m.keys()
dict_keys(["__header__", "__globals__", "labels", "data", "__version__"])
>>> m["labels"]
array([[1],
[3],
[4],
...,
[4],
[3],
[4]], dtype=uint8)
>>> m["data"]
array([[ 1. , 0.35 , 0.265 , ..., 0.0995, 0.0485, 0.07 ],
[ 2. , 0.53 , 0.42 , ..., 0.2565, 0.1415, 0.21 ],
[ 1. , 0.44 , 0.365 , ..., 0.2155, 0.114 , 0.155 ],
...,
[ 1. , 0.59 , 0.44 , ..., 0.439 , 0.2145, 0.2605],
[ 1. , 0.6 , 0.475 , ..., 0.5255, 0.2875, 0.308 ],
[ 2. , 0.625 , 0.485 , ..., 0.531 , 0.261 , 0.296 ]])
有点不太懂这个“uint8”
>>> m["labels"][0]
array([1], dtype=uint8)
>>> m["labels"][0][0]
1
>>> m["labels"][0][0] + 1
2
>>> m["labels"][0].as_type("int")
Traceback (most recent call last):
File "", line 1, in
AttributeError: "numpy.ndarray" object has no attribute "as_type" # 注意时astype不是as_type
>>> m["labels"][0].dtype
dtype("uint8")
>>> m["labels"][0].astype("int")
array([1])
这个数据类型真是醉了:
>>> type(m["labels"][0][0] + 1)
如果要把它变成dataframe,导入pandas后
>>> df = pd.DataFrame(m["data"])
>>> df.head()
0 1 2 3 4 5 6 7
0 1.0 0.350 0.265 0.090 0.2255 0.0995 0.0485 0.070
1 2.0 0.530 0.420 0.135 0.6770 0.2565 0.1415 0.210
2 1.0 0.440 0.365 0.125 0.5160 0.2155 0.1140 0.155
3 3.0 0.330 0.255 0.080 0.2050 0.0895 0.0395 0.055
4 3.0 0.425 0.300 0.095 0.3515 0.1410 0.0775 0.120
总结
以上所述是小编给大家介绍的python读取.mat文件的数据 ,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对脚本之家网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!