如何用三元组表表示下列稀疏矩阵_三元组顺序表,稀疏矩阵的三元组表示及(C语言)实现...

本节介绍稀疏矩阵的三元组顺序表压缩存储方式。

通过《矩阵的压缩存储》一节我们知道,稀疏矩阵的压缩存储,至少需要存储以下信息:

矩阵中各非 0 元素的值,以及所在矩阵中的行标和列标;

矩阵的总行数和总列数;

图 1 稀疏矩阵示意图

例如,图 1 是一个稀疏矩阵,若对其进行压缩存储,矩阵中各非 0 元素的存储状态如图 2 所示:

图 2 稀疏矩阵的压缩存储示意图

图 2 的数组中,存储的是三元组(即由 3 部分数据组成的集合),组中数据分别表示(行标,列标,元素值)。

注意,这里矩阵的行标和列标都从 1 开始。

C 语言中,三元组需要用结构体实现,如下所示:

//三元组结构体

typedef struct {

int i,j;//行标i,列标j

int data;//元素值

}triple;

由于稀疏矩阵中非 0 元素有多个,因此需要建立 triple 数组存储各个元素的三元组。除此之外,考虑到还要存储矩阵的总行数和总列数,因此可以采用以下结构表示整个稀疏矩阵:

#define number 20

//矩阵的结构表示

typedef struct {

triple data[number];//存储该矩阵中所有非0元素的三元组

int n,m,num;//n和m分别记录矩阵的行数和列数,num记录矩阵中所有的非0元素的个数

}TSMatrix;

可以看到,TSMatrix 是一个结构体,其包含一个三元组数组,以及用于存储矩阵总行数、总列数和非 0 元素个数的变量。

假设采用 TSMatrix 结构体存储图 1 中的稀疏矩阵,其 C 语言实现代码应该为:

#include

#define number 3

typedef struct {

int i,j;

int data;

}triple;

typedef struct {

triple data[number];

int n,m,num;

}TSMatrix;

//输出存储的稀疏矩阵

void display(TSMatrix M);

int main() {

TSMatrix M;

M.m=3;

M.n=3;

M.num=3;

M.data[0].i=1;

M.data[0].j=1;

M.data[0].data=1;

M.data[1].i=2;

M.data[1].j=3;

M.data[1].data=5;

M.data[2].i=3;

M.data[2].j=1;

M.data[2].data=3;

display(M);

return 0;

}

void display(TSMatrix M){

for(int i=1;i<=M.n;i++){

for(int j=1;j<=M.m;j++){

int value =0;

for(int k=0;k

if(i == M.data[k].i && j == M.data[k].j){

printf("%d ",M.data[k].data);

value =1;

break;

}

}

if(value == 0)

printf("0 ");

}

printf("\n");

}

}

输出结果为:

1 0 0

0 0 5

3 0 0

### 回答1: 下面是使用三元组顺序表表示稀疏矩阵加法的C语言代码: ``` #include <stdio.h> #include <stdlib.h> #define MAXSIZE 100 typedef struct { int i, j; int value; } Triple; typedef struct { Triple data[MAXSIZE + 1]; int rows, cols, nums; } TSMatrix; void CreateMatrix(TSMatrix *M) { printf("请输入矩阵的行数和列数:"); scanf("%d%d", &M->rows, &M->cols); printf("请输入矩阵中非零元素的个数:"); scanf("%d", &M->nums); printf("请输入矩阵中每个非零元素的行、列、值:\n"); for (int k = 1; k <= M->nums; k++) { scanf("%d%d%d", &M->data[k].i, &M->data[k].j, &M->data[k].value); } } void PrintMatrix(TSMatrix M) { int k = 1; for (int i = 1; i <= M.rows; i++) { for (int j = 1; j <= M.cols; j++) { if (k <= M.nums && M.data[k].i == i && M.data[k].j == j) { printf("%d ", M.data[k].value); k++; } else { printf("0 "); } } printf("\n"); } } void AddMatrix(TSMatrix M1, TSMatrix M2, TSMatrix *M3) { if (M1.rows != M2.rows || M1.cols != M2.cols) { printf("两个矩阵的行列数不相等,无法相加!\n"); return; } M3->rows = M1.rows; M3->cols = M1.cols; int k = 1, l = 1, m = 1; while (k <= M1.nums && l <= M2.nums) { if (M1.data[k].i < M2.data[l].i || (M1.data[k].i == M2.data[l].i && M1.data[k].j < M2.data[l].j)) { M3->data[m].i = M1.data[k].i; M3->data[m].j = M1.data[k].j; M3->data[m].value = M1.data[k].value; k++; } else if (M1.data[k].i > M2.data[l].i || (M1.data[k].i == M2.data[l].i && M1.data[k].j > M2.data[l].j)) { M3->data[m].i = M2.data[l].i; M3->data[m].j = M2.data[l].j; M3->data[m].value = M2.data[l].value; l++; } else { M3->data[m].i = M1.data[k].i; M3->data[m].j = M1.data[k].j; M3->data[m].value = M1.data[k].value + M2.data[l].value; k++; l++; } m++; } while (k <= M1.nums) { M3->data[m].i = M1.data[k].i; M3->data[m].j = M1.data[k].j; M3->data[m].value = M1.data[k].value; k++; m++; } while (l <= M2.nums) { M3->data[m].i = M2.data[l].i; M3->data[m].j = M2.data[l].j; M3->data[m].value = M2.data[l].value; l++; m++; } M3->nums = m - 1; } int main() { TSMatrix M1, M2, M3; printf("请输入第一个矩阵:\n"); CreateMatrix(&M1); printf("第一个矩阵为:\n"); PrintMatrix(M1); printf("请输入第二个矩阵:\n"); CreateMatrix(&M2); printf("第二个矩阵为:\n"); PrintMatrix(M2); AddMatrix(M1, M2, &M3); printf("两个矩阵相加的结果为:\n"); PrintMatrix(M3); return 0; } ``` ### 回答2: 稀疏矩阵是一种特殊的矩阵,其中大部分元素为0。如果使用普通的二维数组来表示矩阵,就会浪费很多空间和时间。因此,使用三元组顺序表是一种更有效的方式来存储稀疏矩阵。在三元组顺序表中,矩阵的行、列和非零元素值都被存储在一个三元组中。 在C语言中,实现稀疏矩阵加法的过程可以分为以下几步: 1. 定义三元组顺序表结构体 ```c typedef struct { int row, col; // 非零元素的行和列 int value; // 非零元素的值 } Triple; typedef struct { Triple data[MAX_SIZE]; // 存储三元组的数组 int rows, cols, non_zeros; // 矩阵的行数、列数和非零元素个数 } TSMatrix; ``` 2. 实现稀疏矩阵加法函数 ```c void add_matrix(TSMatrix A, TSMatrix B, TSMatrix *C) { // 检查两个矩阵是否可以相加 if(A.rows != B.rows || A.cols != B.cols) { printf("Error: the two matrices cannot be added.\n"); return; } // 初始化矩阵C,将A和B的行数、列数和非零元素个数赋给C C->rows = A.rows; C->cols = A.cols; C->non_zeros = 0; // 遍历矩阵A和B,找出相同位置的非零元素并相加 int i = 0, j = 0, k = 0; while(i < A.non_zeros && j < B.non_zeros) { if(A.data[i].row < B.data[j].row || (A.data[i].row == B.data[j].row && A.data[i].col < B.data[j].col)) { C->data[k++] = A.data[i++]; } else if(A.data[i].row > B.data[j].row || (A.data[i].row == B.data[j].row && A.data[i].col > B.data[j].col)) { C->data[k++] = B.data[j++]; } else { int sum = A.data[i].value + B.data[j].value; if(sum != 0) { C->data[k].row = A.data[i].row; C->data[k].col = A.data[i].col; C->data[k].value = sum; k++; C->non_zeros++; } i++; j++; } } // 处理剩余的非零元素 while(i < A.non_zeros) { C->data[k++] = A.data[i++]; } while(j < B.non_zeros) { C->data[k++] = B.data[j++]; } // 更新矩阵C的非零元素个数 C->non_zeros = k; // 打印矩阵C print_matrix(*C); } ``` 在这个函数中,我们首先检查两个矩阵是否可以相加,然后初始化一个新的矩阵C并遍历A和B找出相同位置的非零元素进行相加。最后,我们处理剩余的非零元素并更新矩阵C的非零元素个数。在代码中,我们调用了print_matrix函数来打印新的矩阵C。 实现稀疏矩阵加法的三元组顺序表表示是一种简单而有效的方法,它能够节省存储空间并提高程序的效率。通过理解这个实现过程,我们能够更好地理解数据结构的概念和C语言的应用。 ### 回答3: 稀疏矩阵加法是指在两个稀疏矩阵之间进行加法操作。稀疏矩阵可以用三元组顺序表进行表示,它是一种简单又高效的数据结构,可以大大减少存储空间的占用。 三元组顺序表是一种将稀疏矩阵的元素按照行、列、值这三个属性分别存储的顺序表。其中,行数、列数和非零元素的个数是三元组的基本属性。而在具体的实现过程中,还需要额外加入一些变量,例如表示每行非零元素的起始位置的rowStart数组、表示每行非零元素的个数的rowLength数组等。 稀疏矩阵加法的实现过程主要分为以下几个步骤: 1、首先,需要先将稀疏矩阵三元组顺序表进行表示,并依次读入两个稀疏矩阵三元组,将其分别存储在对应顺序表中。 2、接下来,需要定义一个新的三元组顺序表来存储两个矩阵的和,同时初始化存储结果的顺序表的三个属性:矩阵的行数、列数和非零元素个数。 3、然后,遍历存储矩阵A和矩阵B的顺序表,将它们的非零元素相加,并将结果存储在新的结果矩阵对应位置的三元组中。 4、最后,输出结果矩阵的三元组即可。 在实现过程中,需要注意的一些问题: 1、在遍历三元组顺序表时,需要用两个指针分别指向矩阵A和矩阵B的非零元素,并比较两个指针指向的行、列属性,以便实现对应位置的元素的相加。 2、为了性能优化,在保存结果时,可以使用稀疏矩阵的性质,即大部分元素都是0,只存储非零元素。在保存结果时,只有当结果不是0时才存储结果矩阵的三元组。 3、对于矩阵加法操作,如果两个矩阵的行数和列数不同,则无法进行相加操作。因此,在程序中需要先对输入的矩阵进行判断,确保它们的行数和列数相同。 总之,稀疏矩阵加法的实现需要掌握三元组顺序表的知识,并结合稀疏矩阵的性质进行优化,可以大大提高程序的效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值