八皇后问题python回溯_解决Python基于回溯法子集树模板实现8皇后问题

这篇文章主要介绍了Python基于回溯法子集树模板实现8皇后问题,简单说明了8皇后问题的原理并结合实例形式分析了Python回溯法子集树模板解决8皇后问题的具体实现技巧,需要的朋友可以参考下

本文实例讲述了Python基于回溯法子集树模板实现8皇后问题。分享给大家供大家参考,具体如下:

问题

8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。

分析

为了简化问题,考虑到8个皇后不同行,则每一行放置一个皇后,每一行的皇后可以放置于第0、1、2、...、7列,我们认为每一行的皇后有8种状态。那么,我们只要套用子集树模板,从第0行开始,自上而下,对每一行的皇后,遍历它的8个状态即可。

代码:

'''

8皇后问题

'''

n = 8

x = [] # 一个解(n元数组)

X = [] # 一组解

# 冲突检测:判断 x[k] 是否与前 x[0~k-1] 冲突

def conflict(k):

global x

for i in range(k): # 遍历前 x[0~k-1]

if x[i]==x[k] or abs(x[i]-x[k])==abs(i-k): # 判断是否与 x[k] 冲突

return True

return False

# 套用子集树模板

def queens(k): # 到达第k行

global n, x, X

if k >= n: # 超出最底行

#print(x)

X.append(x[:]) # 保存(一个解),注意x[:]

else:

for i in range(n): # 遍历第 0~n-1 列(即n个状态)

x.append(i) # 皇后置于第i列,入栈

if not conflict(k): # 剪枝

queens(k+1)

x.pop() # 回溯,出栈

# 解的可视化(根据一个解x,复原棋盘。'X'表示皇后)

def show(x):

global n

for i in range(n):

print('. ' * (x[i]) + 'X ' + '. '*(n-x[i]-1))

# 测试

queens(0) # 从第0行开始

print(X[-1], '\n')

show(X[-1])

效果图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值