

[ph1] 质量为2m的木块放置于质量为m的长木板上,木块与模板之间的动摩擦系数为 μ ,木板与地面的摩擦忽略不计。木块和木板以速度V0向右运动,在右侧足够远处有刚性墙壁,木块与墙壁发生完全弹性碰撞后向左运动,木板有足够长度,问第一次碰撞与第二次碰撞的时间间隔?
--------------------------
非常神奇 ,居然会发生第二次碰撞!
既然事情是这样,那我们想象一下它的运动过程。

木块和木板以同样的速度V0向右运动,经过足够长的时间必然会碰到墙壁,请记住,弹性碰撞,————需要回忆一下弹性碰撞的要点,改变了速度方向,大小不变[这是可以证明的]。 嗯,是这样。这是要用到——物理我们首先要分清研究对象,现在是木板与墙壁发生碰撞,没有木块什么事(木块与墙远着呢,够不着)!!!,即木块获得了向左的速度-V0,——我们要确定正方向,既然题目开始向右运动,不妨设向右为正方向。已知的向左运动就是-V0。

木板向左运动,那木块怎么想,木块并没有受到什么外力,它虽然在木板上。——惯性,继续以速度V0向右运动。能继续以V0运动吗?它受到了木板的摩擦力,做什么运动呢?研究对象木块,它的受力和运动分析,木块受到重力,与木块因为相对运动产生了摩擦力,重力与速度方向垂直,且只能在平板运动,不对木块速度产生影响。摩擦力产生影响,摩擦力多大 μ2mg,方向,切记方向,与木块运动方向相反,向左即-2μmg.它会使木块减速。
木板会怎么样?它受到了木块的摩擦力,摩擦力多大μ2mg----(千万不敢犯糊涂,用成了木板的质量m,是因为木块的重量产生的摩擦力),方向与木板运动方向相反,即向右,方向为正2μmg.它会使木块减速。
木板也减速,木块也减速,猜猜看,那个速度先到0。它们受到相同大小的力,但是获得的是不同的加速度,因为它们的质量不同,一个2m,一个是m。质量大的获得的加速度小,所以质量小的先停。——这一分析也非常重要,要不然看别人的答案会迷惑为什么是木板速度减为0.
木板速度减为0后,木块还会继续向右运动,发生什么了,神奇,因摩擦力,木板开始向右运动,加速向右运动,因此它会继续与墙壁发生碰撞。
会发生第三次碰撞吗 ?解完本题再说。
----------------------------
解:
设力和运动向右为正方向。
- 木板和木块向右碰撞墙壁之后,因是弹性碰撞,木板获得速度-V0,木块继续速度V0
- 因相对运动,木板受到2μmg,加速度为2μg,木块受到-2μmg,加速度为-μg。木板的加速度绝度值大,故其速度先减为0,因仍存在相对运动,木板仍会受2μmg的力,加速度2μg,最终木板和木块速度相同,不发生相对运动,摩擦力消失,木板木块向右匀速运动。

碰撞后到以共同速度向右运功作为阶段1,且设共同速度为V1. 考虑此阶段无外力,动量守恒,

解得

3. 对于阶段1 中,我们取木板为研究对象

木板向左
木板向左再向右,实际上位移只是黄色线段部分, 我们设它为-S,(因为知道方向,直接-S)
这个过程木板只受到摩擦力做功,摩擦力为2μmg(我们依规定方向为正),设这个过程所用时间为t1, 又根据动量定理

这个过程还可以用动能定理求得位移S

解得


4. 木块和木板向右匀速运动至碰撞墙壁的位移为S(正方向)【上一个位移为-S】,时间t2

5. 两次碰撞的时间间隔

能否第三次碰撞,肯定会,下次讲。