目录
CentOS 7 安装 NVIDIA 驱动完整手册(适配 run 文件、禁用 nouveau、修复 nvidia-smi 报错)
CentOS 7 安装 NVIDIA 驱动完整手册(适配 run 文件、禁用 nouveau、修复 nvidia-smi 报错)
在基于 CentOS 7 的系统上安装 NVIDIA 显卡驱动时,很多用户遇到 nvidia-smi has failed
、nouveau 冲突、驱动模块未加载等问题。本文将详细介绍从环境准备到成功执行 nvidia-smi
的完整流程。
🔧 一、安装准备
1. 卸载系统中的 nouveau
驱动
echo "blacklist nouveau" > /etc/modprobe.d/disable-nouveau.conf
echo "options nouveau modeset=0" >> /etc/modprobe.d/disable-nouveau.conf
dracut --force
完成后请重启系统:
reboot
重启后验证 nouveau
是否禁用:
lsmod | grep nouveau
# 应无输出
2. 安装必要的编译工具和头文件
确保内核版本一致:
uname -r
安装内核开发包和编译工具:
yum install -y kernel-devel-$(uname -r) gcc make elfutils-libelf-devel
若使用图形界面,需安装 X11 开发包:
yum install -y pkgconfig xorg-x11-server-devel xorg-x11-server-Xorg xorg-x11-utils xorg-x11-xauth
📦 二、安装 NVIDIA 官方驱动
下载 .run
安装包,例如:
chmod +x NVIDIA-Linux-x86_64-570.144.run
进入命令行模式,关闭 GUI(避免冲突):
systemctl isolate multi-user.target
执行安装命令(推荐带参数):
sudo ./NVIDIA-Linux-x86_64-570.144.run --no-opengl-files --disable-nouveau --dkms
📌 三、安装过程中的交互说明
安装过程中会提示以下关键选项:
1️⃣ 选择内核模块类型
Multiple kernel module types are available...
✅ 选择:NVIDIA Proprietary
说明:使用 NVIDIA 提供的闭源内核模块,性能最优,兼容性最好。
2️⃣ 是否重建 initramfs
Nouveau is present in the initramfs...
✅ 选择:Rebuild initramfs
说明:必须清理 initramfs
中残留的 nouveau
,否则 NVIDIA 驱动无法加载。
3️⃣ 是否运行 nvidia-xconfig
Would you like to run the nvidia-xconfig utility...?
✅ 使用桌面环境时选择:Yes
🟡 若为纯命令行服务器可选:No
说明:自动生成 /etc/X11/xorg.conf
,确保图形界面使用 NVIDIA 显卡。
✅ 四、验证安装是否成功
安装成功后,请重启系统:
reboot
重启后执行:
lsmod | grep nvidia # 查看模块是否加载
nvidia-smi # 查看 GPU 使用情况
正常输出如下表示成功:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 570.144 Driver Version: 570.144 CUDA Version: 12.x |
+-----------------------------------------------------------------------------+
🧠 常见错误排查
错误信息 | 原因 | 解决方案 |
---|---|---|
nvidia-smi has failed | nouveau 未禁用、驱动未加载 | 禁用 nouveau + 重建 initramfs |
modprobe nvidia: No such device | 内核模块编译失败 | 安装 kernel-devel 后重新安装驱动 |
图形界面无法启动 | xorg.conf 配置错误 | 删除 /etc/X11/xorg.conf 或重新运行 nvidia-xconfig |
📝 结语
通过以上步骤,你可以在 CentOS 7 上顺利完成 NVIDIA 显卡驱动的安装与配置,解决 nvidia-smi
报错、驱动加载失败等常见问题。对于图形工作站或深度学习服务器,这也是部署 CUDA 运行环境的第一步。
如有需要,我也可以进一步整理基于此驱动环境的 CUDA、cuDNN 安装实录,欢迎留言交流。