python贪心算法0-1背包问题_第十六章 贪心算法——0/1背包问题

本文介绍了0-1背包问题,通过详细解释最优性原理和递推关系,展示了如何使用Python实现0-1背包问题的贪心算法。通过C++和Python代码示例,解释了动态规划解决背包问题的步骤,并分析了算法的时间复杂度。
摘要由CSDN通过智能技术生成

1、问题描述:

给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大?

形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ∋ ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。

2、最优性原理:

设(y1,y2,…,yn)是 (3.4.1)的一个最优解.则(y2,…,yn)是下面相应子问题的一个最优解:

证明:使用反证法。若不然,设(z2,z3,…,zn)是上述子问题的一个最优解,而(y2,y3,…,yn)不是它的最优解。显然有

∑vizi > ∑viyi   (i=2,…,n)

且                           w1y1+ ∑wizi<= c

因此                       v1y1+ ∑vizi (i=2,…,n) > ∑ viyi, (i=1,…,n)

说明(y1,z2, z3,…,zn)是(3.4.1)0-1背包问题的一个更优解,导出(y1,y2,…,yn)不是背包问题的最优解,矛盾。

3、递推关系:

设所给0-1背包问题的子问题

的最优值为m(i,j),即m(i,j)是背包容量为j,可选择物品为i,i+1,…,n时0-1背包问题的最优值。由0-1背包问题的最优子结构性质,可以建立计算m(i,j)的递归式:

注:(3.4.3)式此时背包容量为j,可选择物品为i。此时在对xi作出决策之后,问题处于两种状态之一:

(1)背包剩余容量是j,没产生任何效益;

(2)剩余容量j-wi,效益值增长了vi ;

使用递归C++代码如下:

#include

using namespacestd;const int N=3;const int W=50;int weights[N+1]={0,10,20,30};int values[N+1]={0,60,100,120};int V[N+1][W+1]={0};int knapsack(int i,intj)

{intvalue;if(V[i][j]<0)

{if(j

{

value=knapsack(i-1,j);

}else{

value=max(knapsack(i-1,j),values[i]+knapsack(i-1,j-weights[i]));

}

V[i][j]=value;

}returnV[i][j];

}intmain()

{inti,j;for(i=1;i<=N;i++)for(j=1;j<=W;j++)

V[i][j]=-1;

cout<

cout<

}

//3d10-1 动态规划 背包问题

#include

using namespacestd;const int N = 4;void Knapsack(int v[],int w[],int c,int n,int m[][10]);void Traceback(int m[][10],int w[],int c,int n,intx[]);intmain()

{int c=8;int v[]={0,2,1,4,3},w[]={0,1,4,2,3};//下标从1开始

int x[N+1];int m[10][10];

cout<

{

cout<

}

cout<

cout<

{

cout<

}

cout<

Knapsack(v,w,c,N,m);

cout<

Traceback(m,w,c,N,x);

cout<

{if(x[i]==1)

{

cout<

}

}

cout<

}void Knapsack(int v[],int w[],int c,int n,int m[][10])

{int jMax = min(w[n]-1,c);//背包剩余容量上限 范围[0~w[n]-1]

for(int j=0; j<=jMax;j++)

{

m[n][j]=0;

}for(int j=w[n]; j<=c; j++)//限制范围[w[n]~c]

{

m[n][j]=v[n];

}for(int i=n-1; i>1; i--)

{

jMax= min(w[i]-1,c);for(int j=0; j<=jMax; j++)//背包不同剩余容量j<=jMax

{

m[i][j]= m[i+1][j];//没产生任何效益

}for(int j=w[i]; j<=c; j++) //背包不同剩余容量j-wi >c

{

m[i][j]= max(m[i+1][j],m[i+1][j-w[i]]+v[i]);//效益值增长vi

}

}

m[1][c] = m[2][c];if(c>=w[1])

{

m[1][c] = max(m[1][c],m[2][c-w[1]]+v[1]);

}

}//x[]数组存储对应物品0-1向量,0不装入背包,1表示装入背包

void Traceback(int m[][10],int w[],int c,int n,intx[])

{for(int i=1; i

{if(m[i][c] == m[i+1][c])

{

x[i]=0;

}else{

x[i]=1;

c-=w[i];

}

}

x[n]=(m[n][c])?1:0;

}

运行结果:

算法执行过程对m[][]填表及Traceback回溯过程如图所示:

从m(i,j)的递归式容易看出,算法Knapsack需要O(nc)计算时间; Traceback需O(n)计算时间;算法总体需要O(nc)计算时间。当背包容量c很大时,算法需要的计算时间较多。例如,当c>2^n时,算法需要Ω(n2^n)计算时间。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值