对于通信和信号领域的同学来说,傅里叶变换、信号采样定理一定不陌生。本文主要对傅里叶变换中涉及的时频关系对应进行说明,并仿真了FFT。
主要分为三个部分:
1.时域信号仿真
由于计算机只能计算离散的数值,所以即使我们在仿真时域信号的时候,也是离散时域下的信号。可以理解为对时域采样过后的信号。采样频率为fs,采样间隔即时域间隔即时域分辨率为dt=1/fs。
故t不是连续的,它是有最小间隔的,是dt。产生时域t的方式有:arange或linspace。
import numpy as np
import matplotlib.pyplot as plt
dt1= 0.01
N = 512
t1 = np.arange(0,dt*N,dt)#采样频率100HZ,时域间隔dt1
t2 = np.linspace(0,1,N) #采样频率512HZ,时域间隔1/512
signal_f = 10 #信号频率为10HZ
s1 = np.sin(2 * np.pi * signal_f *t1 )
s2 = np.sin(2 * np.pi * signal_f *t2 )
图是这样的
以s1与s2为例,时域都是512个点,只是dt不一样,s1的dt是0.01,s2的dt是1/512。需要说明的是,在采样正弦信号时,由于周期性的存在,dt与sf的选取是有一定规则的,很容易理解,我们每次采样时,要避免赶上它的整数周期。本例中,对于t1来说, n/(2*sf)不能等于0.01,对于t2来说n/(2*sf)不等于1/512,其中n为正整数。如果不满足上述条件,图形可能是这样。
除了满足上述条件之外,我们自己在设定参数时,也要保证时域信号的采样频率满足采样定理的要求。即采样频率大于等于信号最大频率的2倍。在本例中signal_f = 10 Hz,s1 采样频率为100Hz, s2 采样频率为512Hz。
2.采样定理——频域参数确定
很多同学一直不明白时频各参数相互对应的关系,下面我们就以本例来说明。
最基本的对应关系就是dt = 1/fs。fft后,我们得到的fft图的横坐标频域的最小值为0,最大值就为fs。
其次要明白的是fft变换是不会改变采样点数的。即时域512个点,fft后还是512个点。所以频域间隔也就是平时所说的分辨率df=fs/N。 同时,频率间隔还可这么计算:df由时域的最大值确定,也就是由采样点和时域间隔确定,即df = 1/tmax = 1/(dt*N)。
本例中df1 = fs1/N = 100/512 =1/5.12 =1/tmax1 = 1/(dt1*N)
df2 = fs2/N = 512/512 = 1/1 = 1/tmax2
总结一下:
1)时域频域的采样点数不会变 N = N 即 tmax/dt = fs / df
2)时域间隔决定了频域最大值:fs = 1/dt, 时域最大值决定了频域间隔:df = 1/tmax 。同时,这两个公式反过来再说一次。dt = 1/ fs, tmax = 1/df。
3.FFT变换与画图
由上一步画出的图为下图,可以看到除了在10Hz的频点有单频信号外,中心对称的地方也有信号。而实际上我们做fft的时候,引入了负频率。
python和matlab里也都提供了相应地函数fftshift。那我们还是要确定横坐标。此时很简单,
fft变换后的坐标区间为[-fs/2,fs/2],相应的频率间隔不变。
同时我们也看到,上图中纵坐标也是不对的。因为计算机在做FFT时,是用了N点的值求和计算。所以为了得到真实的fft的幅值,需要除以N。