beaninfo详解源码解析 java_Java源码解析01-02

本文使用 Zhihu On VSCode 创作并发布

01、String的特点和重要方法

String的内部实现

​ jdk1.8中 String内部实际存储结构为char数组。

public final class String
    implements java.io.Serializable, Comparable<String>, CharSequence {
    // 用于存储字符串的值
    private final char value[];
    // 缓存字符串的 hash code
    private int hash; // Default to 0
    // ......其他内容
}
String的重要方法

1、多构造方法

// String 为参数的构造方法

public String(String original) {
    this.value = original.value;
    this.hash = original.hash;
}

// char[] 为参数构造方法

public String(char value[]) {
    this.value = Arrays.copyOf(value, value.length);
}

// StringBuffer 为参数的构造方法

public String(StringBuffer buffer) {
    synchronized(buffer) {
        this.value = Arrays.copyOf(buffer.getValue(), buffer.length());
    }
}

// StringBuilder 为参数的构造方法

public String(StringBuilder builder) {
    this.value = Arrays.copyOf(builder.getValue(), builder.length());
}
//buffer和builder为参数的比较容易忽略,一般这三种类型都是分开使用

2、equals()比较两个字符串是否相等

public boolean equals(Object anObject) {
    // 对象引用相同直接返回 true
    if (this == anObject) {
        return true;
    }
    // 判断需要对比的值是否为 String 类型,如果不是则直接返回 false
    if (anObject instanceof String) {
        String anotherString = (String)anObject;
        int n = value.length;
        if (n == anotherString.value.length) {
            // 把两个字符串都转换为 char 数组对比
            char v1[] = value;
            char v2[] = anotherString.value;
            int i = 0;
            // 循环比对两个字符串的每一个字符
            while (n-- != 0) {
                // 如果其中有一个字符不相等就 true false,否则继续对比
                if (v1[i] != v2[i])
                   return false;
                i++;
            }
            return true;
        }
    }
   return false;
}

String重写了Object类中的equals()方法,该方法需要传递一个Object类型的参数值,比较时会先通过instanceof判断是否为String类型,不是的话直接返回false。判断参数类型为String类型之后,循环比较两个字符串中的每一个字符。所有字符都相等时返回true,否则返回false。

3、compareTo()比较两个字符串

public int compareTo(String anotherString) {
    int len1 = value.length;
    int len2 = anotherString.value.length;
    // 获取到两个字符串长度最短的那个 int 值
    int lim = Math.min(len1, len2);
    char v1[] = value;
    char v2[] = anotherString.value;
    int k = 0;
    // 对比每一个字符
    while (k < lim) {
        char c1 = v1[k];
        char c2 = v2[k];
        if (c1 != c2) {
            // 有字符不相等就返回差值
            return c1 - c2;
        }
        k++;
    }
    return len1 - len2;
}

循环比较所有的字符,当两个字符串中有任意一个字符不相等时,return char1 - char2。如果一个字符串是另一个字符串的子串,则返回两串长度之差。

compareTo()和equals()方法都是用于比较两个字符串的,但有两点不同:

  • equals()可以接收一个Object类型的参数,而compareTo()只能接收一个String类型的参数
  • equals()返回Boolean,compareTo()返回int。

当equals()返回true,compareTo()返回0的时候,表示两个字符串完全相同。

4、其他方法

  • indexOf():查询字符串首次出现的下标位置
  • lastIndexOf():查询字符串最后出现的下标位置
  • contains():查询字符串中是否包含另一个字符串
  • toLowerCase():把字符串全部转换成小写
  • toUpperCase():把字符串全部转换成大写
  • length():查询字符串的长度
  • trim():去掉字符串首尾空格
  • replace():替换字符串中的某些字符
  • split():把字符串分割并返回字符串数组
  • join():把字符串数组转为字符串
实战例题

1、==和equals的区别

== 对于基本类型而言,用于比较“值”是否相等;对于引用类型而言,用于比较引用地址是否相同。

public boolean equals(Object obj) {
    return (this == obj);
}

Object类中的equals()方法其实就是==,String中则重写了equals()方法修改成比较两个字符串的值是否相等。

2、final修饰的好处

​ 从源码可看到,String是被final修饰的不可继承类。这样设计的原因是:

​ 1.final能够缓存结果,在传参的时候不需要考虑谁会修改它的值;如果是可变类的话,则有可能需要重新拷贝出一个新值进行传参,在性能上会有损失。(高效)

​ 2.另一个原因是安全,调用其他方法时,可能会有一系列校验,可变类在校验后内部值又改变了,会引起严重的系统崩溃。(安全)

08d01eb95c18e1985e518cea98b29218.png
Image
举个例子,如图中两个变量:
String s1 = "java";
String s2 = "java";

当字符串不可变时,才能实现字符串常量池,为我们缓存字符串,提高运行效率。而且如果String可变,当s1修改时,s2也跟着变了,和预期结果不相符,无法实现字符串常量池的功能了。

3.String和StringBuilder、StringBuffer的区别

​ StringBuffer可变,提供append和insert方法用于字符串拼接,使用synchronized来保证线程安全。保证线程安全则性能不高,JDK1.5之后StringBuilder没有使用synchronized修饰,性能更优,在非并发情景下使用StringBuilder更好。

@Override
public synchronized StringBuffer append(Object obj) {
    toStringCache = null;
    super.append(String.valueOf(obj));
    return this;
}
@Override
public synchronized StringBuffer append(String str) {
    toStringCache = null;
    super.append(str);
    return this;
}

4.String和JVM

String常见的创建方式有两种,new String()和直接赋值。直接赋值会先去字符串常量池中查找是否已经有此值,如果有则把引用地址直接指向此值,否则会先在常量池中创建,再指向该值。而new String()会先在堆上创建一个字符串对象,然后再去常量池中查询此字符串的值是否已存在,不存在的话则先创建后将引用指向此字符串。

String s1 = new String("Java");
String s2 = s1.intern();//intern指向的是常量池中的字符串
String s3 = "Java";
System.out.println(s1 == s2); // false
System.out.println(s2 == s3); // true

fc634244ebf12add3e2bd60bec76d464.png
Image

JDK1.7之后把永生代换成的元空间,把字符串常量池从方法区移到了Java堆上。而编译器的优化可以将"Ja"+"va"编译成"Java",因此通过这两种形式创建的字符串变量都直接指向常量池。

02、HashMap的底层实现原理和JDK8优化

​ JDK1.7中HashMap是以数组加链表的形式组成的,1.8之后新增了红黑树的组成结构,当链表大于8并且容量大于64的时候,链表结构就会转换成红黑树结构,如图所示:

8f78874620db61374ae55edc843a85cd.png
Image
数组中的元素称为哈希桶,定义如下
static class Node<K,V> implements Map.Entry<K,V> {
    final int hash;
    final K key;
    V value;
    Node<K,V> next;
    Node(int hash, K key, V value, Node<K,V> next) {
        this.hash = hash;
        this.key = key;
        this.value = value;
        this.next = next;
    }
    public final K getKey()        { return key; }
    public final V getValue()      { return value; }
    public final String toString() { return key + "=" + value; }
    public final int hashCode() {
        return Objects.hashCode(key) ^ Objects.hashCode(value);
    }
    public final V setValue(V newValue) {
        V oldValue = value;
        value = newValue;
        return oldValue;
    }
    public final boolean equals(Object o) {
        if (o == this)
            return true;
        if (o instanceof Map.Entry) {
            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
            if (Objects.equals(key, e.getKey()) &&
                Objects.equals(value, e.getValue()))
                return true;
        }
        return false;
    }
}

哈希桶包含四个字段:hash,key,value,next,其中next表示链表的下一个节点。1.8中因为链表过长会严重影响性能,所以用了具有快速增删改查特点的红黑树。

HashMap源码分析
// HashMap 初始化长度
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
// HashMap 最大长度
static final int MAXIMUM_CAPACITY = 1 << 30; // 1073741824
// 默认的加载因子 (扩容因子)
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 当链表长度大于此值且容量大于 64 时
static final int TREEIFY_THRESHOLD = 8;
// 转换链表的临界值,当元素小于此值时,会将红黑树结构转换成链表结构
static final int UNTREEIFY_THRESHOLD = 6;
// 最小树容量
static final int MIN_TREEIFY_CAPACITY =

加载因子:又称扩容因子or负载因子,用于判断什么时候进行扩容,比如0.75,初始化容量为16,当hashmap中有12个元素时,会扩容。设置为0.75的原因是出于容量和性能间平衡的结果。加载因子值较大的时候,扩容发生频率低,占用空间小,但是发生hash冲突的几率会提升,需要更复杂的数据结构存储元素,对元素操作时间增加,运行效率降低。而加载因子值较小时,会占用更多空间,元素存储比较稀疏,发生冲突可能性小,操作性能高。

HashMap中三个重要方法
  • 查询

    public V get(Object key) {
        Node<K,V> e;
        // 对 key 进行哈希操作
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        // 非空判断
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            // 判断第一个元素是否是要查询的元素
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            // 下一个节点非空判断
            if ((e = first.next) != null) {
                // 如果第一节点是树结构,则使用 getTreeNode 直接获取相应的数据
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do { // 非树结构,循环节点判断
                    // hash 相等并且 key 相同,则返回此节点
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }
    

    当哈希冲突的时候,通过判断key值是否相等来确定是否为我们想要的元素。

  • 新增

public V put(K key, V value) {
    // 对 key 进行哈希操作
    return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    // 哈希表为空则创建表
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    // 根据 key 的哈希值计算出要插入的数组索引 i
    if ((p = tab[i = (n - 1) & hash]) == null)
        // 如果 table[i] 等于 null,则直接插入
        tab[i] = newNode(hash, key, value, null);
    else {
        Node<K,V> e; K k;
        // 如果 key 已经存在了,直接覆盖 value
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        // 如果 key 不存在,判断是否为红黑树
        else if (p instanceof TreeNode)
            // 红黑树直接插入键值对
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {
            // 为链表结构,循环准备插入
            for (int binCount = 0; ; ++binCount) {
                // 下一个元素为空时
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                    // 转换为红黑树进行处理
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st(此处判断了table长度)
                        treeifyBin(tab, hash);
                    break;
                }
                //  key 已经存在直接覆盖 value
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    // 超过最大容量,扩容
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}

新增的执行过程如图所示

ce0a7213090bd784cfc9a2f98200c448.png
Image
  • 数据扩容
final Node<K,V>[] resize() {
    // 扩容前的数组
    Node<K,V>[] oldTab = table;
    // 扩容前的数组的大小和阈值
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    // 预定义新数组的大小和阈值
    int newCap, newThr = 0;
    if (oldCap > 0) {
        // 超过最大值就不再扩容了
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        // 扩大容量为当前容量的两倍,但不能超过 MAXIMUM_CAPACITY
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
    // 当前数组没有数据,使用初始化的值
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else {               // zero initial threshold signifies using defaults
        // 如果初始化的值为 0,则使用默认的初始化容量
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    // 如果新的容量等于 0
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr; 
    @SuppressWarnings({"rawtypes","unchecked"})
    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    // 开始扩容,将新的容量赋值给 table
    table = newTab;
    // 原数据不为空,将原数据复制到新 table 中
    if (oldTab != null) {
        // 根据容量循环数组,复制非空元素到新 table
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                // 如果链表只有一个,则进行直接赋值
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    // 红黑树相关的操作
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    // 链表复制,JDK 1.8 扩容优化部分
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        // 原索引
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        // 原索引 + oldCap
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    // 将原索引放到哈希桶中
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    // 将原索引 + oldCap 放到哈希桶中
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

1.7扩容时会重算hash值,效率很低。而1.8在确定index的时候,用的是(e.hash & oldCap - 1)。在扩容的时候,并非重新计算每一元素的哈希值,而是通过(e.hash & oldCap),得到的两种结果只有0或者oldCap。用来判断是否需要移动,当结果为0的时候,下标位置不变,当结果为oldCap时,新下标位置=原下标位置+oldCap。如图所示

0b0fb1e40d8d0da2bdd81a4a2c078c69.png
Image
PS该判据的数学原理

CPU取余数(仅对2的N次方数有效)采用的是:X & (2^N - 1)

原理是:十进制数乘以2^n,其二进制表现为左移n位;十进制数除以2^n,其二进制表现为右移n位。取余数的原理是,将二进制数右移n位,低位被移掉的即是余数的二进制形式。而在位运算的规则下,某一位与1进行&运算,该位的值会被保留。2^n-1在二进制的形式下,表现为111...1(n-1位),因此某个数和2^n-1作&运算,得出的结果是被移掉的余数。所以在Java找index的时候,使用(hash& length - 1)取余数去找。

而jdk1.8扩容使用的hash&length,目的是为了保留hash值在原length位上的值,因为length(设计为2^n的值)二进制表示为100...000,该位为1,则扩容一倍之后,该hash的元素会从loTail移动到hiTail,为0则不会。

HashMap死循环分析

假设 HashMap 默认大小为 2,原本 HashMap 中有一个元素 key(5),我们再使用两个线程:t1 添加元素 key(3),t2 添加元素 key(7),当元素 key(3) 和 key(7) 都添加到 HashMap 中之后,线程 t1 在执行到 Entry<K,V> next = e.next; 时,交出了 CPU 的使用权。

void transfer(Entry[] newTable, boolean rehash) {
    int newCapacity = newTable.length;
    for (Entry<K,V> e : table) {
        while(null != e) {
            Entry<K,V> next = e.next; // 线程一执行此处
            if (rehash) {
                e.hash = null == e.key ? 0 : hash(e.key);
            }
            int i = indexFor(e.hash, newCapacity);
            e.next = newTable[i];
            newTable[i] = e;
            e = next;
        }
    }
}

此时线程 t1 中的 e 指向了 key(3),而 next 指向了 key(7) ;之后线程 t2 重新 rehash 之后链表的顺序被反转,链表的位置变成了 key(5) → key(7) → key(3),其中 “→” 用来表示下一个元素。

当 t1 重新获得执行权之后,先执行 newTalbe[i] = e 把 key(3) 的 next 设置为 key(7),而下次循环时查询到 key(7) 的 next 元素为 key(3),于是就形成了 key(3) 和 key(7) 的循环引用,因此就导致了死循环的发生,如下图所示:

d3064af9b09d7d7bb06b0682793bdffd.png
Image
发生死循环的原因是1.7链表插入方式为首部倒序插入,在1.8被优化成尾部正序插入。hashmap本身非线程安全,多线程下,建议用ConcurrentHashMap代替。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值