echarts无数据时显示无数据_钣金无腻子数据还原

介绍了一种新的数据还原钣金无腻子修复方法,该方法通过精确的数据测量和指示剂涂抹技术,避免了传统修复工艺中腻子使用带来的缺陷,实现了更高质量的汽车钣金修复。

钣金修复就是把将汽车金属外壳变形部分进行修复,比如车体外壳被撞了个坑,就可以通过钣金使之恢复原样,然后再通过喷涂专门设计油漆,使变形的汽车金属表面恢复到与其他完好的地方一样,光亮如初。

传统的汽车修复技术一般都会用到钣金和打腻子处理,但事实上,刮腻子存在很多缺陷。既然刮腻子有这么多的缺陷,那么如何既能完美修复汽车,又能避免这一缺陷呢?为此大庆王钣金汽车无腻子数据还原、凹陷修复为您带来了完美的答复。

4102a822085641edb4deeb9e26cd9fe9.png

一种数据还原钣金无腻子修复方法与流程

本发明涉及钣金工艺设计技术领域,特别涉及一种数据还原钣金无腻子修复方法。

背景技术:

钣金是针对金属薄板的一种综合冷加工工艺,包括钣金拉拔、漆面打磨、整形机整形、焊接找平、数据测量、指示剂涂抹、使用钣金液、底漆遮盖、烤漆和厚度测量等工序。

传统钣金工艺维修工具是撬棍、铁锤、介子机和焊垫片等,用其进行钣金找平维修。由于钣金都是通过以某个点或焊接拉力等进行找平,那么钣金就会高低起伏,从而使钣金铁皮受到拉长损伤,所以需要通过钣金收火或介子机碳棒大电流收火上水,使铁皮达到热胀冷缩原理进行找平。以上传统钣金工艺修理方法对钣金的影响有几大缺点;1、钣金拉长2、钣金过火3、钣金薄厚不一4、钣金里部电熔漆受损5、钣金碰撞力减弱6、钣金焊接漏点增加7、平整度无法达标8、由于平整度不够,需要腻子找平,时间久了腻子会开裂起泡9、漆面与腻子融合后会造成漆面失光、久之褪色。所以现在急需一种精准的的钣金无腻子修复工艺。

技术实现要素:

本发明是要解决现有钣金工艺过程中钣金修复难度大、工艺复杂的问题,而提供一种一种数据还原钣金无腻子修复方法。

本发明包括一种数据还原钣金无腻子修复方法,包括如下步骤:

步骤a钣金拉拔:首先找到钣金拉拔点,然后用胶枪将拉排粘在拉拔点处进行拉拔,同时进行拉拔点周边钣金震动,根据钣金创伤面损伤情况反复找点拉拔,使创伤钣金面整平定型后,进行漆面打磨、整形机整形和焊接找平操作;

步骤b数据测量:在整平的钣金上画多个方格,用数据尺测量创伤钣件相对应的完好钣件,将测量得到的数据与创伤钣件比对,将不符合完好钣件之处标记,然后对标记的位置反复测量、拉拔或收火;

步骤c指示剂涂抹:在钣金上涂抹氧化铁颜料,找到钣金表面细微凹凸的之处,然后在这些位置继续拉拔或收火,使钣金整平。

在所述步骤c之后,进行如下操作:将钣金液手工擦拭到磨掉漆的钣金部位上,停留8分钟后喷涂专用底漆。

0e9eae7c69d23b775ef6611c9079a227.png
72cfe86eade260713f613df27f7dec4d.png

技术总结

本发明涉及一种数据还原钣金无腻子修复方法,包括如下步骤:步骤a钣金拉拔、步骤b数据测量、步骤c指示剂涂抹。本发明取代了传统钣金工艺中,仅凭技术经验、手感、远离测光来判断钣金是否存在问题的操作。本发明以数据尺进行测量为依据,完成了钣金流线型和平整度判定,钣金数据测量整平后进行液体指示剂涂抹,能进一步将钣金凭手感或测光找不到的细微凹凸的小点都显现出来,达到钣金不用打腻子维修的效果。

763a221f84ece0dc3aef2b862b7fbe5f.png
ed4da28817caaa700fd1bde37e242e68.png
a45887b70509612998d841b0b0051c32.png
41031d3e9d96b1a75270cea6309fb75e.png

黑龙江王钣金汽车综合服务中心全“新”全意”为您服务

内容概要:本文介绍了基于自适应傅里叶分解(AFD)的多通道信号分析方法,并提供了完整的Matlab代码实现,适用于复杂信号的频分析。该方法特别针对非平稳、非线性信号具有良好的分解能力,可用于如机械故障诊断、生物医学信号处理等领域。文档还列举了多个相关研究方向和技术应用实例,包括轴承故障检测、无人机路径规划、微电网功率交换、信号去噪与预测等,展示了AFD及其他先进算法在工程实践中的广泛适用性。同附带网盘资源链接,便于获取完整代码与资料。; 适合人群:具备一定信号处理或自动化背景的研究生、科研人员及从事机电系统故障诊断、智能算【自适应傅里叶分解AFD】多通道信号分析的自适应傅里叶分解(Matlab代码实现)法开发的工程技术人员;熟悉Matlab编程并希望将先进信号分析方法应用于实际项目的从业者;; 使用场景及目标:①在变速工况下对多通道振动信号进行高效特征提取与故障识别;②利用AFD替代传统傅里叶变换或EMD方法提升信号分解精度;③结合倒谱预白化、包络谱分析等技术实现强噪声环境下的早期故障诊断;④拓展至无人机、电力系统、通信等领域的信号建模与优化问题; 阅读建议:建议读者按目录顺序系统学习,重点关注AFD算法原理与Matlab实现细节,结合提供的案例调试代码,理解参数设置对分解效果的影响;同可参考文中提及的其他高级算法(如鲸鱼优化、深度学习模型)进行融合创新,提升研究深度与实用性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值