kneed
Knee-point detection in Python
This repository is an attempt to implement the kneedle algorithm, published here. Given a set of x and y values, kneed will return the knee point of the function. The knee point is the point of maximum curvature.
Table of contents
Installation
Tested with Python 3.5, 3.6, and 3.7
anaconda
$ conda install -c conda-forge kneed
pip
$ pip install kneed
Clone from GitHub
$ git clone https://github.com/arvkevi/kneed.git
$ python setup.py install
Usage
These steps introduce how to use kneed by reproducing Figure 2 from the manuscript.
Input Data
The DataGenerator class is only included as a utility to generate sample datasets.
Note: x and y must be equal length arrays.
from kneed import DataGenerator, KneeLocator
x, y = DataGenerator.figure2()
print([round(i, 3) for i in x])
print([round(i, 3) for i in y])
[0.0, 0.111, 0.222, 0.333, 0.444, 0.556, 0.667, 0.778, 0.889, 1.0]
[-5.0, 0.263, 1.897, 2.692, 3.163, 3.475, 3.696, 3.861, 3.989, 4.091]
Find Knee
The knee (or elbow) point is calculated simply by instantiating the KneeLocator class with x, y and the appropriate curve and direction.
Here, kneedle.knee and/or kneedle.elbow store the point of maximum curvature.
kneedle = KneeLocator(x, y, S=1.0, cu