Pandas玩转数据(五) -- Concatenate和Combine

本文深入探讨了使用Python的Pandas库进行数据整合的方法,包括Concatenate和Combine功能,帮助读者掌握如何在数据分析中有效地聚合和合并数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据分析汇总学习

https://blog.csdn.net/weixin_39778570/article/details/81157884

import pandas as pd
import numpy as np
from pandas import Series, DataFrame

# arrange上的Concatenate
arr1 = np.arange(9).reshape(3,3)
arr1
Out[6]: 
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
arr2 = np.arange(9).reshape(3,3)
arr2
Out[9]: 
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
# 进行concatenate,axis参数表示结合方向,默认0是纵向结合
np.concatenate([arr1,arr2])
Out[10]: 
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8],
       [0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
np.concatenate([arr1,arr2], axis=1)
Out[
以下是使用ptorch实现NSL-KDD数据集预处理的步骤: 1. 下载NSL-KDD数据集,并将其解压缩。可以从以下链接下载数据集:http://www.unb.ca/cic/datasets/nsl.html 2. 使用Pythonpandas库加载数据集,并将其转换为NumPy数组。例如,可以使用以下代码加载数据集: ``` import pandas as pd import numpy as np # Load the NSL-KDD dataset train_df = pd.read_csv('KDDTrain+.txt', header=None) test_df = pd.read_csv('KDDTest+.txt', header=None) # Convert the datasets to NumPy arrays train_data = train_df.to_numpy() test_data = test_df.to_numpy() ``` 3. 对数据进行预处理,包括对离散特征进行独热编码、对标签进行编码等。例如,可以使用以下代码进行预处理: ``` from sklearn.preprocessing import LabelEncoder, OneHotEncoder # Encode the labels label_encoder = LabelEncoder() train_labels = label_encoder.fit_transform(train_data[:, -1]) test_labels = label_encoder.transform(test_data[:, -1]) # One-hot encode the categorical features categorical_features = [1, 2, 3, 41] one_hot_encoder = OneHotEncoder(categories='auto') train_categorical = one_hot_encoder.fit_transform(train_data[:, categorical_features]).toarray() test_categorical = one_hot_encoder.transform(test_data[:, categorical_features]).toarray() # Scale the numerical features numerical_features = [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40] train_numerical = train_data[:, numerical_features].astype(np.float32) test_numerical = test_data[:, numerical_features].astype(np.float32) ``` 4. 将预处理后的数据合并为一个NumPy数组。例如,可以使用以下代码将处理后的数据合并起来: ``` # Combine the categorical and numerical features train_features = np.concatenate((train_categorical, train_numerical), axis=1) test_features = np.concatenate((test_categorical, test_numerical), axis=1) # Combine the features and labels train_data = np.concatenate((train_features, train_labels.reshape(-1, 1)), axis=1) test_data = np.concatenate((test_features, test_labels.reshape(-1, 1)), axis=1) ``` 5. 将处理后的数据保存到文件中,以便在训练测试模型时使用。例如,可以使用以下代码将处理后的数据保存到文件中: ``` # Save the preprocessed data to files np.save('train_data.npy', train_data) np.save('test_data.npy', test_data) ``` 这些步骤将NSL-KDD数据集进行预处理,使其可以在PyTorch中用于训练测试模型。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值