仪表盘故障图像识别_一目了然:汽车仪表盘上指示、警示、故障图标全解

汽车仪表盘上的图标多达64种,包括日常指示灯、警示灯和故障灯。日常指示灯如转向灯、灯光指示灯等;警示灯如燃油存量、车窗清洗液位;故障灯如发动机、机油系统、充电系统警告灯等。当这些故障灯亮起时,应及时处理,如充电系统警告灯亮需尽快维修,水温过高需停车冷却,机油压力警告灯亮要检查机油,电动转向系统警告灯亮则需去4S店检查,SRS警告灯亮可能影响安全气囊功能,也应及时检修。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

小小的汽车仪表盘上,有多少种图标?粗略统计后,给出的答案是64种!除了我们常见的大灯、转向灯、机油灯等图标外,还有许多图标车友们可能未必能读懂它们的用途。

小小的汽车仪表盘上,有多少种图标?粗略统计后,给出的答案是64种!

除了我们常见的大灯、转向灯、机油灯等图标外,还有许多图标车友们可能未必能读懂它们的用途。要知道,在大风或大雨时行驶,这些隐患就可能成为酿成车祸的罪魁祸首。所以读懂这些图标至关重要。

指示、警示、故障图标功用大致三类

第一类为日常指示灯,平时开车时最常见的转向信号灯、灯光指示灯、安全带指示灯、定速巡航指示灯、驻车指示灯等都属于这一类,它们只起到车辆各功能工作状态的提示作用,平时都很常见,所以大家都很熟悉,这里就不再多说了。

第二类是具有警示功能的指示灯,如燃油存量指示灯、车窗清洗液位指示灯,这类指示灯警告车主只要尽快添加相应油液即可排除。

第三类也是最重要的故障类指示灯,包括发动机(排气系统)故障灯、机油系统故障灯、电瓶及发电系统故障灯等,这些故障类指示灯平时很少会亮,但只要亮了就表示车辆已经出现故障或异常,小则影响行车安全,大则有可能损坏车辆,需要立即进行检修,或联系车辆的品牌4S店进行救援。

这些灯亮必须赶紧去回场检修

充电系统警告灯

在发动机运转中,充电系统有异常情况发生时,充电警告灯点亮。此时会有电力不足的情况发生,车辆无法启动,灯光、音响等全都无法工作。

你该怎么做:先关闭车上的音响、灯光等非必需的电器设备,保持车辆不要熄火,尽快开到维修点去修理。

水温指示灯

表示发动机内冷却液的温度,只在车辆自检时点亮数秒,平时为熄灭状态。水温指示灯常亮,说明冷却液温度超过规定值,就是所谓发动机“开锅”。

你该怎么做:这时应立刻暂停行驶,水温正常后指示灯会熄灭。

机油压力警告灯

表示发动机油压过低。发动机在工作时需要靠机油来润滑和降温,如果机油不足,容易导致发动机缸体磨损过大,把发动机烧毁。

你该怎么做:先检查下机油是否足够,如果不足的话尽快添加机油,等警告灯熄灭后可以继续行驶。如果添加机油后警告灯依然亮着,则需要立刻去维修点检查。

电动转向系统警告灯

同样与行车安全有着非常紧密关系的还有电动转向系统警告灯,当它亮起来时,很可能会导致方向盘打不死、不会自动回位等现象。

你该怎么做:去4S店查询一下故障码,以便确定是哪个环节出现故障,好针对性地检查处理,常见的是助力模块内部电子元件损坏或转矩传感器故障,需要更换。

SRS警告灯

SRS是指安全气囊,通常情况下,这个灯在行车时并不会亮,如果发现该指示灯在行车时亮起或闪烁,则表示安全气囊或者安全带涨紧器系统有故障,无法正常工作。虽然它不会影响车辆正常行驶,但是一旦遇见事故,就有可能发生安全气囊无法弹出的情况,对驾乘人员的人身安全有较大影响。

你该怎么做:作为车辆被动安全方面非常重要的一项配置,你最好及时去4S店检修一下,途中谨慎驾驶。

注:本文中所提到的仪表盘中的标识是在您的车拥有相关配置之后才会显示的,并不是提到的所有标识在每款车上都有。

### 关于液位计读数的图像处理方法 对于液位计读数的图像处理,可以采用多种技术和方法来实现自动化检测和数据提取。以下是几种常见的技术及其具体应用: #### 1. **边缘检测** 通过使用Canny边缘检测器或其他类似的算法,可以从液位计的图像中提取出重要的轮廓特征。这种方法能够帮助定位液面的位置,并进一步计算其高度或位置[^1]。 ```python import cv2 import numpy as np def detect_edges(image_path): image = cv2.imread(image_path, 0) # 加载灰度图 edges = cv2.Canny(image, 100, 200) # 边缘检测 return edges ``` #### 2. **阈值分割** 利用阈值化技术分离前景(液体部分)与背景(空气部分)。这一步骤通常用于初步筛选感兴趣区域(ROI),以便后续更精确的操作。 ```python def apply_threshold(image): _, thresh = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY) return thresh ``` #### 3. **形态学操作** 为了清理噪声或者填补断裂线条,在完成基本预处理之后可执行开闭运算等形态学变换。这些步骤有助于提高最终测量精度。 ```python kernel = np.ones((5,5),np.uint8) opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel) closing = cv2.morphologyEx(opening,cv2.MORPH_CLOSE,kernel) ``` #### 4. **Hough变换** 如果目标容器具有明显的直线边界,则可以通过霍夫线变换找到它们的确切坐标,从而辅助判断液平面所在之处。 ```python lines = cv2.HoughLinesP(edges,rho=1,theta=np.pi/180,threshold=10,minLineLength=10,maxLineGap=250) for line in lines: x1,y1,x2,y2 = line[0] cv2.line(img,(x1,y1),(x2,y2),(0,255,0),2) ``` MATLAB同样提供了丰富的工具箱支持上述功能,比如Image Processing Toolbox就包含了几乎所有必要的函数来进行此类分析工作。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值