cnn 示意图_CNN经典模型:LeNet

欢迎点赞,转发,收藏,关注!!

经典神经网络诞生记:

1、LeNet,1998年

  2、AlexNet,2012年

  3、ZF-net,2013年

  4、GoogleNet,2014年

  5、VGG,2014年

  6、ResNet,2015年

39dd171efc8f5e4472430d4c60928345.png

近几年来,卷积神经网络(Convolutional Neural Networks,简称CNN)在图像识别中取得了非常成功的应用,成为深度学习的一大亮点。CNN发展至今,已经有很多变种,其中有几个经典模型在CNN发展历程中有着里程碑的意义,它们分别是:LeNet、Alexnet、Googlenetww 、VGG、DRL等,接下来将分期进行逐一介绍。

简单回顾一下CNN的几个特点:局部感知、参数共享、池化。

6193f73a747422eee4dd5824cfd51d01.png

1、局部感知

人类对外界的认知一般是从局部到全局、从片面到全面,类似的,在机器识别图像时也没有必要把整张图像按像素全部都连接到神经网络中,在图像中也是局部周边的像素联系比较紧密,而距离较远的像素则相关性较弱,因此可以采用局部连接的模式(将图像分块连接,这样能大大减少模型的参数),如下图所示:

2156b8fda21f1a457f1a0cb40b6d86e3.png

2、参数(权值)共享

每张自然图像(人物、山水、建筑等)都有其固有特性,也就是说,图像其中一部分的统计特性与其它部分是接近的。这也意味着这一部分学习的特征也能用在另一部分上,能使用同样的学习特征。因此,在局部连接中隐藏层的每一个神经元连接的局部图像的权值参数(例如5×5),将这些权值参数共享给其它剩下的神经元使用,那么此时不管隐藏层有多少个神经元,需要训练的参数就是这个局部图像的权限参数(例如5×5),也就是卷积核的大小,这样大大减少了训练参数。如下图

3798ae62f76c89827196f246ec016173.png

3、池化

随着模型网络不断加深,卷积核越来越多,要训练的参数还是很多,而且直接拿卷积核提取的特征直接训练也容易出现过拟合的现象。回想一下,之所以对图像使用卷积提取特征是因为图像具有一种“静态性”的属性,因此,一个很自然的想法就是对不同位置区域提取出有代表性的特征(进行聚合统计,例如最大值、平均值等),这种聚合的操作就叫做池化,池化的过程通常也被称为特征映射的过程(特征降维),如下图:

c50eee9acaf508b0ecaa8ec6f6a226b3.png

回顾了卷积神经网络(CNN)上面的三个特点后,下面来介绍一下CNN的经典模型:手写字体识别模型LeNet5。

LeNet5诞生于1994年,是最早的卷积神经网络之一, 由Yann LeCun完成,推动了深度学习领域的发展。在那时候,没有GPU帮助训练模型,甚至CPU的速度也很慢,因此,LeNet5通过巧妙的设计,利用卷积、参数共享、池化等操作提取特征,避免了大量的计算成本,最后再使用全连接神经网络进行分类识别,这个网络也是最近大量神经网络架构的起点,给这个领域带来了许多灵感。

总体来说LeNet是从输入INPUT->C1卷积层->S2池化层->C3卷积层->S4池化层->C5卷积层->F6全连接层->输出OUTPUT

LeNet5的网络结构示意图如下所示:

2af596dc993c7d1b0f6740a0e20c1322.png

LeNet5由7层CNN(不包含输入层)组成,上图中输入的原始图像大小是32×32像素,卷积层用Ci表示,子采样层(pooling,池化)用Si表示,全连接层用Fi表示。下面逐层介绍其作用和示意图上方的数字含义。

LeNet-5共有7层,不包含输入,每层都包含可训练参数;每个层有多个Feature Map,每个FeatureMap通过一种卷积滤波器提取输入的一种特征,然后每个FeatureMap有多个神经元。

几个卷积核对应几个像素点。

0. 输入层:

注意:本层不算LeNet-5的网络结构,传统上,不将输入层视为网络层次结构之一。

1、C1层(卷积层):6@28×28

输入图片:32*32

卷积核大小:5*5

卷积核种类:6

输出featuremap大小:28*28 (32-5+1)=28

神经元数量:28*28*6

可训练参数:(5*5+1) * 6(每个滤波器5*5=25个unit参数和一个bias参数,一共6个滤波器)

连接数:(5*5+1)*6*28*28=122304

详细说明:对输入图像进行第一次卷积运算(使用 6 个大小为 5*5 的卷积核),得到6个C1特征图(6个大小为28*28的 feature maps, 32-5+1=28)。我们再来看看需要多少个参数,卷积核的大小为5*5,总共就有6*(5*5+1)=156个参数,其中+1是表示一个核有一个bias。对于卷积层C1,C1内的每个像素都与输入图像中的5*5个像素和1个bias有连接,所以总共有156*28*28=122304个连接(connection)。有122304个连接,但是我们只需要学习156个参数,主要是通过权值共享实现的。

(1)特征图大小

每个卷积核(5×5)与原始的输入图像(32×32)进行卷积,这样得到的feature map(特征图)大小为(32-5+1)×(32-5+1)= 28×28

卷积过程如下图所示:

55749ffe0032dce1b873a267a4b42e5a.png

卷积核与输入图像按卷积核大小逐个区域进行匹配计算,匹配后原始输入图像的尺寸将变小,因为边缘部分卷积核无法越出界,只能匹配一次,如上图,匹配计算后的尺寸变为Cr×Cc=(Ir-Kr+1)×(Ic-Kc+1),其中Cr、Cc,Ir、Ic,Kr、Kc分别表示卷积后结果图像、输入图像、卷积核的行列大小。

(2)参数个数

由于参数(权值)共享的原因,对于同个卷积核每个神经元均使用相同的参数,因此,参数个数为(5×5+1)×6= 156,其中5×5为卷积核参数,1为偏置参数

(3)连接数

卷积后的图像大小为28×28,因此每个特征图有28×28个神经元,每个卷积核参数为(5×5+1)×6,因此,该层的连接数为(5×5+1)×6×28×28=122304

2、S2层(下采样层,也称池化层):6@14×14

(1)特征图大小

这一层主要是做池化或者特征映射(特征降维),池化单元为2×2,因此,6个特征图的大小经池化后即变为14×14。回顾本文刚开始讲到的池化操作,池化单元之间没有重叠,在池化区域内进行聚合统计后得到新的特征值,因此经2×2池化后,每两行两列重新算出一个特征值出来,相当于图像大小减半,因此卷积后的28×28图像经2×2池化后就变为14×14。

这一层的计算过程是:2×2 单元里的值相加,然后再乘以训练参数w,再加上一个偏置参数b(每一个特征图共享相同的w和b),然后取sigmoid值(S函数:0-1区间),作为对应的该单元的值。卷积操作与池化的示意图如下:

ae4c977bd9822920f19bf691f2c900b9.png

(2)参数个数

S2层由于每个特征图都共享相同的w和b这两个参数,因此需要2×6=12个参数

(3)连接数

下采样之后的图像大小为14×14,因此S2层的每个特征图有14×14个神经元,每个池化单元连接数为2×2+1(1为偏置量),因此,该层的连接数为(2×2+1)×14×14×6 = 5880

3、C3层(卷积层):16@10×10

输入:S2中所有6个或者几个特征map组合

卷积核大小:5*5

卷积核种类:16

神经元数量:10*10*16

输出featureMap大小:10*10 : (14-5+1)=10

C3中的每个特征map是连接到S2中的所有6个或者几个特征map的,表示本层的特征map是上一层提取到的特征map的不同组合

存在的一个方式是:C3的前6个特征图以S2中3个相邻的特征图子集为输入。接下来6个特征图以S2中4个相邻特征图子集为输入。然后的3个以不相邻的4个特征图子集为输入。最后一个将S2中所有特征图为输入。

(kx+b)可训练参数:6*(3*5*5+1)+6*(4*5*5+1)+3*(4*5*5+1)+1*(6*5*5+1)=1516(每个神经元在16层中总的参数)

解释一下,比如第一层是连续S2中的三层,5*5的算子进行卷积,所以C3的第一层的第一个元素 = sigmoid(3*(S2的一层5*5+S2的一层5*5+S2的一层5*5)+ bias )所以才会是6*(3*5*5+1)而不是6*3*(5*5+1),这样的话就是不三层归为一层了,因为一个神经元做一次运算,输入为S2的某三层,kx+b,一个比bias。(或者直接理解为部分连接即可

连接数:10*10*1516=151600

详细说明:第一次池化之后是第二次卷积,第二次卷积的输出是C3,16个10x10的特征图,卷积核大小是 5*5. 我们知道S2 有6个 14*14 的特征图,怎么从6 个特征图得到 16个特征图了? 这里是通过对S2 的特征图特殊组合计算得到的16个特征图。具体如下:

75fcdc4433cb4e2e1d70c2b7641530c7.png

C3的前6个feature map(对应上图第一个红框的6列)与S2层相连的3个feature map相连接(上图第一个红框),后面6个feature map与S2层相连的4个feature map相连接(上图第二个红框),后面3个feature map与S2层部分不相连的4个feature map相连接,最后一个与S2层的所有feature map相连。卷积核大小依然为5*5,所以总共有6*(3*5*5+1)+6*(4*5*5+1)+3*(4*5*5+1)+1*(6*5*5+1)=1516个参数。而图像大小为10*10,所以共有151600个连接。

52baca16710f89d6ae0933f5b384c902.png

C3与S2中前3个图相连的卷积结构如下图所示:

6f1840ac89fa0b945e7fddcb7a04e0df.png

上图对应的参数为 3*5*5+1,一共进行6次卷积得到6个特征图,所以有6*(3*5*5+1)参数。 为什么采用上述这样的组合了?论文中说有两个原因:1)减少参数,2)这种不对称的组合连接的方式有利于提取多种组合特征。

4、S4(下采样层,也称池化层):16@5×5

输入:10*10

采样区域:2*2

采样方式:4个输入相加,乘以一个可训练参数,再加上一个可训练偏置。结果通过sigmoid

采样种类:16

输出featureMap大小:5*5(10/2)

神经元数量:5*5*16=400

连接数:16*(2*2+1)*5*5=2000

S4中每个特征图的大小是C3中特征图大小的1/4

详细说明:S4是pooling层,窗口大小仍然是2*2,共计16个feature map,C3层的16个10x10的图分别进行以2x2为单位的池化得到16个5x5的特征图。有5x5x5x16=2000个连接。连接的方式与S2层类似。

5、C5层(卷积层):120

输入:S4层的全部16个单元特征map(与s4全相连)

卷积核大小:5*5

卷积核种类:120

输出featureMap大小:1*1(5-5+1)

可训练参数/连接:120*(16*5*5+1)=48120

详细说明:C5层是一个卷积层。由于S4层的16个图的大小为5x5,与卷积核的大小相同,所以卷积后形成的图的大小为1x1。这里形成120个卷积结果。每个都与上一层的16个图相连。所以共有(5x5x16+1)x120 = 48120个参数,同样有48120个连接。C5层的网络结构如下:

ab138177acc69156227b7c65b0fa83bd.png

6、F6层(全连接层):84

(1)特征图大小

F6层有84个单元,之所以选这个数字的原因是来自于输出层的设计,对应于一个7×12的比特图,如下图所示,-1表示白色,1表示黑色,这样每个符号的比特图的黑白色就对应于一个编码。

cb1b455e17738ee6b9e58389c1c52b9c.png

该层有84个特征图,特征图大小与C5一样都是1×1,与C5层全连接。

详细说明:6层是全连接层。F6层有84个节点,对应于一个7x12的比特图,-1表示白色,1表示黑色,这样每个符号的比特图的黑白色就对应于一个编码。该层的训练参数和连接数是(120 + 1)x84=10164。

(2)参数个数

由于是全连接,参数数量为(120+1)×84=10164。跟经典神经网络一样,F6层计算输入向量和权重向量之间的点积,再加上一个偏置,然后将其传递给sigmoid函数得出结果。

(3)连接数

由于是全连接,连接数与参数数量一样,也是10164。

F6层的连接方式如下:

52baca16710f89d6ae0933f5b384c902.png

7、OUTPUT层(输出层):10

Output层也是全连接层,共有10个节点,分别代表数字0到9。如果第i个节点的值为0,则表示网络识别的结果是数字i。

(1)特征图大小

Output层也是全连接层,共有10个节点,分别代表数字0到9,且如果节点i的值为0,则网络识别的结果是数字i。采用的是径向基函数(RBF)的网络连接方式。假设x是上一层的输入,y是RBF的输出,则RBF输出的计算方式是:

该层采用径向基函数(RBF)的网络连接方式,假设x是上一层的输入,y是RBF的输出,则RBF输出的计算方式是:

fee8920864ca83b0aacc9764e7f35175.png

上式中的Wij的值由i的比特图编码确定,i从0到9,j取值从0到7×12-1。RBF输出的值越接近于0,表示当前网络输入的识别结果与字符i越接近。上式w_ij 的值由i的比特图编码确定,i从0到9,j取值从0到7*12-1。RBF输出的值越接近于0,则越接近于i,即越接近于i的ASCII编码图,表示当前网络输入的识别结果是字符i。该层有84x10=840个参数和连接。

(2)参数个数

由于是全连接,参数个数为84×10=840

(3)连接数

由于是全连接,连接数与参数个数一样,也是840

通过以上介绍,已经了解了LeNet各层网络的结构、特征图大小、参数数量、连接数量等信息,下图是识别数字3的过程,可对照上面介绍各个层的功能进行一一回顾:

c3ff08e65730caafef6e8270db78bf92.png

建议

Ann LeCun 在1998年发表了关于LeNet的经典论文《Gradient-Based Learning Applied to Document Recognition 》(基于梯度学习在文档识别中的应用),里面有非常详细介绍,建议阅读这篇论文,进一步巩固知识。

总结

LeNet-5是一种用于手写体字符识别的非常高效的卷积神经网络。

卷积神经网络能够很好的利用图像的结构信息。

卷积层的参数较少,这也是由卷积层的主要特性即局部连接和共享权重所决定。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值