1. 斐波那契数列
序号 | 0 | 1 | 2 | 3 | 4 | 5 | 6... |
数列 | 0 | 1 | 1 | 2 | 3 | 5 | 8... |
2. 三种程序
import time
time1 = time.clock()
#斐波那契数列
# 1.递归
def fibo1(n):
if n == 0 or n == 1:
return n
return fibo1(n-1)+fibo1(n-2)
print(fibo1(6)) # 8
time2 = time.clock()
# 2.带备忘录的递归
def fibo2(n):
r = [0]*(n+1)
def fib(n, r):
if r[n] != 0:
return r[n]
if n <= 2:
r[n] = 1
else:
r[n] = fib(n-1, r)+fib(n-2, r)
return r[n]
return fib(n,r)
print(fibo2(6)) # 8
time3 = time.clock()
# 3.自底向上
def fibo3(n):
f0 = 0
f1 = 1
if n==0 or n == 1 :
return n
for i in range(n-1):
f0, f1 = f1, f0+f1
return f1
print(fibo3(6)) # 8
time4 = time.clock()
print(time4-time3, time3-time2, time2-time1)
# 9.473442388444293e-06 1.3420710050296084e-05 3.434122865811057e-05
# 三种方法时间比较
#方法3 所用的时间最短,方法2(具有备忘录的递归)时间 次之 方法1(递归)时间最长
3. 求n=3的斐波那契数列的递归过程图