svm实现二分类_如何在Python中实现SVM分类?

本文介绍了如何在Python中使用sklearn库的SVM进行二分类任务。通过加载数据集,分析数据维度,然后导入svm模块,进行数据预处理,构建并训练SVM模型,对新数据进行预测,最后展示预测结果和概率值。
摘要由CSDN通过智能技术生成

在数据维度达到一定的量时,推荐使用支持向量机 (SVM)算法, 因为它在高维空间中也能够快速高效地进行分类。

下面介绍一个简单的操作步骤。

1.输入数据集,分析数据维度,可以看到共有0,1,2,3四个类别。

import pandas as pddf=pd.DataFrame({'math':[98,78,54,89,24,60,98,44,96,90],'english':[92,56,90,57,46,75,76,87,91,88],'chinese':[95,69,91,52,60,80,78,81,96,82],'rank':[0,3,2,3,1,1,2,2,0,0]})

2.导入svm工具包。没有安装sklearn的要先安装svm。

from sklearn import svm

3.数据准备。本例中数据都是数值型变量,且没有空值,直接取X,y变量。

X=df.ix[:,['math','english','chinese']]

y=df['rank']

0b51955dedbc302537591062eaed0a4e.png

4.建立模型,并进行训练。

clf = svm.SVC()

clf.fit(X, y)  

5.模型预测。有一组新的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值