Tom CzHen 奇妙的Linux世界
Python 开发中一般会使用 Virtualenv、Pip 管理项目运行环境与依赖。在创建一个新项目时先使用 Virtualenv 创建一个虚拟运行环境,然后使用 Pip 安装依赖,最后使用 pip freeze > requirements.txt 记录项目依赖。这个过程中会遇到一些问题:
- 版本信息没有保存
- 升级依赖包时需要先查看requirements.txt
- 开发环境与生产环境依赖区分
解决上述问题最直接的做法就是生成多个 requirements.txt ,比如:requirements-dev.txt、requirements-prod.txt 并记录好依赖版本信息,或者选择 Pipenv: Python Dev Workflow for Humans 。
从名字可以很直观的看出 pipenv = pip + virtualenv。
在开发中使用 pipenv
在项目开发过程中使用 pipenv 体验基本与 pip 一致,而且由于 pipenv 也会同时管理虚拟环境,体验上流程更顺滑。pipenv 使用 Pipfile 与 Pipfile.lock 来管理依赖,Pipfile.lock 会根据安装的依赖包记录 hash 校验值与版本信息。
创建虚拟环境
在新建项目目录下可以通过以下三种方式创建虚拟环境:
$ pipenv --python 3.6$ pipenv --python /path/to/python$ pipenv install requests --python 3.6
注意:如果没有使用 --python 参数指定 Python 版本则会使用默认的 Python 版本创建,如果想指定默认 Python 版本可以通过环境变量 PIPENV_DEFAULT_PYTHON_VERSION 配置,可以设置为 Python 版本号:3.6.8 或 Python 解释器程序路径。
如果需要虚拟运行环境目录指定在项目目录下创建,有两种方式可以实现:
- 执行 pipenv 前先创建 .venv 目录
$ mkdir .venv && pipenv install requests --python 3.6
- 配置 PIPENV_VENV_IN_PROJECT 环境变量
$ export PIPENV_VENV_IN_PROJECT=1
如果想自定义这个目录则需要通过 WORKON_HOME 环境变量来配置。
- 从现有项目创建虚拟环境
对于现有项目,可以区分为三种情况:
- 没有使用 pipenv
使用 pipenv install -r path/to/requirements.txt --python 3.6 来安装依赖。
- 有使用意向,但需要兼容旧方式
通过 pipenv lock -r > requirements.txt 生成与 pip 相同格式的依赖管理文件。
- 已经在使用
根据需要可以使用 pipenv install 或 pipenv sync。两者都会根据 Pipfile 中的 Python 版本创建虚拟环境,使用指定的 PyPI 源,区别是 pipenv install 会根据 Pipfile 中的版本信息安装依赖包,并重新生成 Pipfile.lock;而 pipenv sync 会根据 Pipfile.lock 中的版本信息安装依赖包。
也就是 pipenv install 安装的依赖包版本可能被更新,具体的机制在依赖包管理中进一步说明。
激活虚拟环境
可以先激活虚拟环境,再来运行 Python :
$ pipenv shell
或者直接运行:
$ pipenv run python main.py
在项目根目录下有 .env 环境配置文件时,激活虚拟环境同时会加载 .env 文件中的环境变量配置,如果不想使用这个功能可以通过配置 PIPENV_DONT_LOAD_ENV 变量来关闭它。
依赖包管理
pipenv 安装包的使用方式与 pip基本一致,直接在项目目录下执行 pipenv install request 会安装到虚拟环境目录下,没有虚拟环境则会创建后安装。
- 安装包
没有指定版本信息时,Pipfile 中不会注明版本,如果在新目录中使用 pipenv install直接安装依赖包的最新版本。
$ pipenv install requests
以下方式会指定为 1.2 或以上版本,但不会大于等于 2.0,使用 pipenv install 安装依赖时,如果新版本在 1.2 到 2.0 之间(不包含 2.0 版本)就会更新
$ pipenv install “requests~=1.2”
更多的版本指定方式如下:
$ pipenv install "requests>=1.4" # 版本号大于或等于 1.4.0$ pipenv install "requests<=2.13" # 版本号小于或等于 2.13.0$ pipenv install "requests>2.19" # 版本号大于 2.19.0
如果仅仅在开发 环境下使用这个包,可以添加 --dev 参数安装:
$ pipenv install ipython --dev
- 更新包
- 查看有更新的包
$ pipenv update --outdated
- 更新所有依赖包
$ pipenv update
- 更新指定依赖包
$ pipenv update request
注意:升级依赖包的版本时受到 Pipfile 中版本信息限制,如果想安装超出限制的版本,则需要执行 pipenv install 安装。
- 卸载包
$ pipenv uninstall requests
查看依赖关系
$ pipenv graph
安装或卸载依赖包之后,pipenv 都会更新 pipfile 与 pipfile.lock
配置 PyPI 镜像源
通常会使用 pip.conf 或者 --index-url 参数来配置 PyPI 镜像源,pipenv 中有多种配置方式:
- 使用环境变量 PIPENV_PYPI_MIRROR 配置。
$ export PIPENV_PYPI_MIRROR=https://mirrors.aliyun.com/pypi/simple/
- 使用项目中的 pipfile 文件配置。
通过项目 pipfile 文件中的 [[source]] 节也可以配置安装源,并且只对该项目生效。
[[source]]name = "pypi"url = "https://mirrors.aliyun.com/pypi/simple/"verify_ssl = true...
配合 pyenv 使用
Linux 和 macOS 下可以安装 pyenv 配合使用,在使用 pipenv 时如果指定的 Python版本没有安装,就会调用 pyenv 进行编译安装。
首先请参考 pyenv: Common build problems - Prerequisites 安装好编译依赖。
官方文档链接:https://github.com/pyenv/pyenv/wiki/Common-build-problems#prerequisites
然后根据 Simple Python Version Management: pyenv - Installation 安装好 pyenv。
官方文档链接:https://github.com/pyenv/pyenv#installation
注意:Windows 用户请手动下载 Python 安装包安装,通过 pipenv --python X:Python...python.exe 指定 Python 版本,如果想编译安装请自行解决。
- 配置 pyenv
可以根据需要配置源码缓存与编译临时文件路径,解决因为网络问题无法下载源码包,或者 /tmp 分区空间不足造成编译安装失败。
- 源码包缓存
添加缓存目录,然后将源码包存放到缓存目录,并且编译失败时不会重新下载源码包。
$ mkdir -p $(pyenv root)/cache
- 临时文件目录
默认使用系统临时文件路径 /tmp,指定其他路径为临时文件目录。
$ mkdir ~/tmp$ export TMPDIR="$HOME/tmp"
- 有些第三方包工具比如 PyInstaller 需要 CPython 以 --enable-shared 参数编译
$ env PYTHON_CONFIGURE_OPTS="--enable-shared" pyenv install 3.6.8
在部署时使用 pipenv
为了保证部署时安装的依赖版本与发布一致,使用 pipenv install 需要加上 --deploy参数。
$ pipenv install --deploy
如果不使用虚拟环境,还需要加上 --system 参数
$ sudo pipenv install --deploy --system
在 Docker 中使用 pipenv
这里给一个 Dockerfile 作为参考。
FROM python:3.6.8ENV PIP_INDEX_URL https://mirrors.aliyun.com/pypi/simple/RUN pip3 install pipenv --no-cache-dirRUN set -ex && mkdir /appWORKDIR /appCOPY Pipfile PipfileCOPY Pipfile.lock Pipfile.lockRUN set -ex && pipenv install --deploy --systemCOPY . /appEXPOSE 8888CMD ["python3", "main.py"]
也可以先构建一个 Base Image ,然后在构建应用镜像时使用,假设构建的 Base Image tag 为 tomczhen/python-pipenv-base:3.6.8。
- Base Image Dockerfile
FROM python:3.6.8ENV PIP_INDEX_URL https://mirrors.aliyun.com/pypi/simple/RUN pip3 install pipenv --no-cache-dirRUN set -ex && mkdir /appWORKDIR /appONBUILD COPY ["Pipfile","Pipfile.lock","./"]ONBUILD RUN set -ex && pipenv install --deploy --system
- Python Application Image Dockerfile
FROM tomczhen/python-pipenv-base:3.6.8COPY . /appEXPOSE 8888CMD ["python3", "main.py"]
pipenv 的缺点
当然,pipenv 也有缺点存在。
lock 耗时
Lock updating is very slow · Issue #1914 · pypa/pipenv
这是一个代价问题。
由于需要根据依赖关系以及文件 hash 来生成 Pipfile.lock,所以短时间内看这个问题应该是无法解决的。需要在 pipenv 带来的依赖管理功能与速度上做一个权衡取舍。
目前的办法是在安装依赖时使用 pipenv install --skip-lock 来跳过生成/更新 Pipfile.lock,然后在需要时执行 pipenv lock 来生成/更新 Pipfile.lock。
跨平台问题
严格来说这并不算是 pipenv 的问题。
部分包在跨平台时的依赖不同,比如 PyInstaller 可以在多个平台使用,但仅在 Windows 上才依赖 pywin32 包,由于 Pipfile.lock 是根据安装的包生成的,在之前的 pipenv版本中会造成跨平台时安装依赖失败(当前新版本中没有问题)。
根据 Problem with Pipfile and system specific packages · Issue #1575 · pypa/pipenv 中的讨论看,即便 pywin32 修复了问题也只能在新版本中解决,因此如果有跨平台需求还需要先确定是否正常。