
一、欧氏距离【又称:欧几里得距离(Euclidean Distance)】
欧氏距离是最常见的距离度量(用于衡量个体在空间上存在的距离,距离越远说明个体间的差异越大),衡量的是n维空间中两个点之间的实际距离。


#代码实现方法一
二、余弦距离
余弦相似度用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小。两个向量越相似夹角越小,余弦值越接近1。相比距离度量,余弦相似度更加注重两个向量在方向上的差异,而非距离或长度上。


import
三、汉明距离(效率高,计算速度快)
汉明距离表示两个(相同长度)字对应位不同的数量,我们以d(x,y)表示两个字x,y之间的汉明距离。对两个字符串进行异或运算,并统计结果为1的个数,那么这个数就是汉明距离。
向量相似度越高,对应的汉明距离越小。如10001001和10010001有2位不同。
#比较两张图片的相似度