python中文聊天_GitHub - 116pythonZS/chinese_chatbot_corpus: 中文公开聊天语料库

说明

该库是对目前市面上已有的开源中文聊天语料的搜集和系统化整理工作

该库搜集了包含

chatterbot

豆瓣多轮

PTT八卦语料

青云语料

电视剧对白语料

贴吧论坛回帖语料

微博语料

小黄鸡语料

共8个公开闲聊常用语料和短信,白鹭时代问答等语料。

并对8个常见语料的数据进行了统一化规整和处理,达到直接可以粗略使用的目的。

使用该项目,即可对所有的聊天语料进行一次性的处理和统一下载,不需要到处自己去搜集下载和分别处理各种不同的格式。

注意

以下所有语料都已经统一下载好,存在 https://pan.baidu.com/s/1szmNZQrwh9y994uO8DFL_A 提取码:f2ex 中。给出的语料原链接是为了说明该语料的原始出处是在哪里

环境

python3

处理过程

将各个来源的语料按照其原格式进行提取,提取后进行繁体字转换,然后统一变成一轮一轮的对话。

数据来源及说明

语料名称

语料数量

语料来源说明

语料特点

语料样例

是否已分词

chatterbot

560

开源项目

按类型分类,质量较高

Q:你会开心的 A:幸福不是真正的可预测的情绪。

douban(豆瓣多轮)

352W

来自北航和微软的paper, 开源项目

噪音相对较少,原本是多轮(平均7.6轮)

Q:烟台 十一 哪 好玩 A:哪 都 好玩 · · · ·

ptt(PTT八卦语料)

40W

开源项目,台湾PTT论坛八卦版

繁体,语料较生活化,有噪音

Q:为什么乡民总是欺负国高中生呢QQA:如果以为选好科系就会变成比尔盖兹那不如退学吧

qingyun(青云语料)

10W

某聊天机器人交流群

相对不错,生活化

Q:看来你很爱钱 A:噢是吗?那么你也差不多了

subtitle(电视剧对白语料)

274W

开源项目,来自爬取的电影和美剧的字幕

有一些噪音,对白不一定是严谨的对话,原本是多轮(平均5.3轮)

Q:京戏里头的人都是不自由的A:他们让人拿笼子给套起来了了

tieba(贴吧论坛回帖语料)

232W

偶然找到的

多轮,有噪音

Q:前排,鲁迷们都起床了吧A:标题说助攻,但是看了那球,真是活生生的讽刺了

weibo(微博语料)

443W

来自华为的paper

仍有一些噪音

Q:北京的小纯洁们,周日见。#硬汉摆拍清纯照# A:嗷嗷大湿的左手在干嘛,看着小纯洁撸么。

xiaohuangji(小黄鸡语料)

45W

原人人网项目语料

有一些不雅对话,少量噪音

Q:你谈过恋爱么A:谈过,哎,别提了,伤心..。

使用方法

将解压后的raw_chat_corpus文件夹放到当前目录下

目录结构为

raw_chat_corpus

-- language

-- process_pipelines

-- raw_chat_corpus

---- chatterbot-1k

---- douban-multiturn-100w

---- ....

-- main.py

-- ...

执行命令即可

python main.py

或者

python3 main.py

生成结果

每个来源的语料分别生成一个独立的*.tsv文件,都放在新生成的clean_chat_corpus文件夹下。

生成结果格式为 tsv格式,每行是一个样本,先是query,再是answer

query \t answer

结果的使用

这个就根据每个人不同的情况自主使用即可

个人对于聊天机器人方向实践也不是很多,以下一篇之前写的知乎专栏供参考

《从产品完整性的角度浅谈chatbot》

文章粗略讲解了如下一些方面,介绍了聊天机器人在实际产品化过程中可能遇到的问题和解决办法。

chatbot自身人格的设置

产品上线需要考虑的敏感词处理

文本检索模型的使用

文本生成模型的使用

回答打分机制

万能回答的使用策略

多媒体消息的处理

产品模型部署的问题

版权说明

本项目为非商业项目,为纯搜集和汇总资料,如有侵权,请在issue下留言。

# 说明 该库是对目前市面上已有的开源中文聊天语料的搜集和系统化整理工作 该库搜集了包含 - chatterbot - 豆瓣多轮 - PTT八卦语料 - 青云语料 - 电视剧对白语料 - 贴吧论坛回帖语料 - 微博语料 - 小黄鸡语料 共8个公开闲聊常用语料和短信,白鹭时代问答等语料。 并对8个常见语料的数据进行了统一化规整和处理,达到直接可以粗略使用的目的。 **使用该项目,即可对所有的聊天语料进行一次性的处理和统一下载,不需要到处自己去搜集下载和分别处理各种不同的格式。* # 环境 python3 # 处理过程 将各个来源的语料按照其原格式进行提取,提取后进行繁体字转换,然后统一变成一轮一轮的对话。 # 使用方法 将解压后的raw_chat_corpus文件夹放到当前目录下 目录结构为 ``` raw_chat_corpus -- language -- process_pipelines -- raw_chat_corpus ---- chatterbot-1k ---- douban-multiturn-100w ---- .... -- main.py -- ... ``` 执行命令即可 ```bash python main.py ``` 或者 ```bash python3 main.py ``` # 生成结果 每个来源的语料分别生成一个独立的*.tsv文件,都放在新生成的clean_chat_corpus文件夹下。 生成结果格式为 tsv格式,每行是一个样本,先是query,再是answer ``` query \t answer ``` # 结果的使用 这个就根据每个人不同的情况自主使用即可 个人对于聊天机器人方向实践也不是很多,以下一篇之前写的知乎专栏供参考 **《从产品完整性的角度浅谈chatbot》** 文章粗略讲解了如下一些方面,介绍了聊天机器人在实际产品化过程中可能遇到的问题和解决办法。 1. chatbot自身人格的设置 1. 产品上线需要考虑的敏感词处理 1. 文本检索模型的使用 1. 文本生成模型的使用 1. 回答打分机制 1. 万能回答的使用策略 1. 多媒体消息的处理 1. 产品模型部署的问题 # 版权说明 本项目为非商业项目,为纯搜集和汇总资料,如有侵权,请在issue下留言。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值