python 多进程 调用模块内函数_Python3多进程 multiprocessing 模块实例详解

本文实例讲述了Python3多进程 multiprocessing 模块。分享给大家供大家参考,具体如下:

多进程 Multiprocessing 模块

Process 类

Process 类用来描述一个进程对象。创建子进程的时候,只需要传入一个执行函数和函数的参数即可完成 Process 示例的创建。

star()方法启动进程,

join()方法实现进程间的同步,等待所有进程退出。

close() 用来阻止多余的进程涌入进程池 Pool 造成进程阻塞。

multiprocessing.Process(group=None, target=None, name=None, args=(), kwargs={}, *, daemon=None)

target是函数名字,需要调用的函数

args函数需要的参数,以 tuple 的形式传入

示例:

import multiprocessing

import os

def run_proc(name):

print('Child process {0} {1} Running '.format(name, os.getpid()))

if __name__ == '__main__':

print('Parent process {0} is Running'.format(os.getpid()))

for i in range(5):

p = multiprocessing.Process(target=run_proc, args=(str(i),))

print('process start')

p.start()

p.join()

print('Process close')

结果:

Parent process 809 is Running

process start

process start

process start

process start

process start

Child process 0 810 Running

Child process 1 811 Running

Child process 2 812 Running

Child process 3 813 Running

Child process 4 814 Running

Process close

Pool

Pool 可以提供指定数量的进程供用户使用,默认是 CPU 核数。当有新的请求提交到 Poll 的时候,如果池子没有满,会创建一个进程来执行,否则就会让该请求等待。

- Pool 对象调用 join 方法会等待所有的子进程执行完毕

- 调用 join 方法之前,必须调用 close

- 调用 close 之后就不能继续添加新的 Process 了

pool.apply_async

apply_async方法用来同步执行进程,允许多个进程同时进入池子。

import multiprocessing

import os

import time

def run_task(name):

print('Task {0} pid {1} is running, parent id is {2}'.format(name, os.getpid(), os.getppid()))

time.sleep(1)

print('Task {0} end.'.format(name))

if __name__ == '__main__':

print('current process {0}'.format(os.getpid()))

p = multiprocessing.Pool(processes=3)

for i in range(6):

p.apply_async(run_task, args=(i,))

print('Waiting for all subprocesses done...')

p.close()

p.join()

print('All processes done!')

结果:

current process 921

Waiting for all subprocesses done...

Task 0 pid 922 is running, parent id is 921

Task 1 pid 923 is running, parent id is 921

Task 2 pid 924 is running, parent id is 921

Task 0 end.

Task 3 pid 922 is running, parent id is 921

Task 1 end.

Task 4 pid 923 is running, parent id is 921

Task 2 end.

Task 5 pid 924 is running, parent id is 921

Task 3 end.

Task 4 end.

Task 5 end.

All processes done!

pool.apply

apply(func[, args[, kwds]])

该方法只能允许一个进程进入池子,在一个进程结束之后,另外一个进程才可以进入池子。

import multiprocessing

import os

import time

def run_task(name):

print('Task {0} pid {1} is running, parent id is {2}'.format(name, os.getpid(), os.getppid()))

time.sleep(1)

print('Task {0} end.'.format(name))

if __name__ == '__main__':

print('current process {0}'.format(os.getpid()))

p = multiprocessing.Pool(processes=3)

for i in range(6):

p.apply(run_task, args=(i,))

print('Waiting for all subprocesses done...')

p.close()

p.join()

print('All processes done!')

结果:

Task 0 pid 928 is running, parent id is 927

Task 0 end.

Task 1 pid 929 is running, parent id is 927

Task 1 end.

Task 2 pid 930 is running, parent id is 927

Task 2 end.

Task 3 pid 928 is running, parent id is 927

Task 3 end.

Task 4 pid 929 is running, parent id is 927

Task 4 end.

Task 5 pid 930 is running, parent id is 927

Task 5 end.

Waiting for all subprocesses done...

All processes done!

Queue 进程间通信

Queue 用来在多个进程间通信。Queue 有两个方法,get 和 put。

put 方法

Put 方法用来插入数据到队列中,有两个可选参数,blocked 和 timeout。

- blocked = True(默认值),timeout 为正

该方法会阻塞 timeout 指定的时间,直到该队列有剩余空间。如果超时,抛出 Queue.Full 异常。

blocked = False

如果 Queue 已满,立刻抛出 Queue.Full 异常

get 方法

get 方法用来从队列中读取并删除一个元素。有两个参数可选,blocked 和 timeout

- blocked = False (默认),timeout 正值

等待时间内,没有取到任何元素,会抛出 Queue.Empty 异常。

blocked = True

Queue 有一个值可用,立刻返回改值;Queue 没有任何元素,

from multiprocessing import Process, Queue

import os, time, random

# 写数据进程执行的代码:

def proc_write(q,urls):

print('Process(%s) is writing...' % os.getpid())

for url in urls:

q.put(url)

print('Put %s to queue...' % url)

time.sleep(random.random())

# 读数据进程执行的代码:

def proc_read(q):

print('Process(%s) is reading...' % os.getpid())

while True:

url = q.get(True)

print('Get %s from queue.' % url)

if __name__=='__main__':

# 父进程创建Queue,并传给各个子进程:

q = Queue()

proc_writer1 = Process(target=proc_write, args=(q,['url_1', 'url_2', 'url_3']))

proc_writer2 = Process(target=proc_write, args=(q,['url_4','url_5','url_6']))

proc_reader = Process(target=proc_read, args=(q,))

# 启动子进程proc_writer,写入:

proc_writer1.start()

proc_writer2.start()

# 启动子进程proc_reader,读取:

proc_reader.start()

# 等待proc_writer结束:

proc_writer1.join()

proc_writer2.join()

# proc_reader进程里是死循环,无法等待其结束,只能强行终止:

proc_reader.terminate()

结果:

Process(1083) is writing...

Put url_1 to queue...

Process(1084) is writing...

Put url_4 to queue...

Process(1085) is reading...

Get url_1 from queue.

Get url_4 from queue.

Put url_5 to queue...

Get url_5 from queue.

Put url_2 to queue...

Get url_2 from queue.

Put url_6 to queue...

Get url_6 from queue.

Put url_3 to queue...

Get url_3 from queue.

Pipe 进程间通信

常用来在两个进程间通信,两个进程分别位于管道的两端。

multiprocessing.Pipe([duplex])

示例一和示例二,也是网上找的别人的例子,尝试理解并增加了注释而已。网上的例子,大多是例子一和例子二在一起的,这里分开来看,比较容易理解。

示例一:

from multiprocessing import Process, Pipe

def send(pipe):

pipe.send(['spam'] + [42, 'egg']) # send 传输一个列表

pipe.close()

if __name__ == '__main__':

(con1, con2) = Pipe() # 创建两个 Pipe 实例

sender = Process(target=send, args=(con1, )) # 函数的参数,args 一定是实例化之后的 Pip 变量,不能直接写 args=(Pip(),)

sender.start() # Process 类启动进程

print("con2 got: %s" % con2.recv()) # 管道的另一端 con2 从send收到消息

con2.close() # 关闭管道

结果:

con2 got: ['spam', 42, 'egg']

示例二:

from multiprocessing import Process, Pipe

def talk(pipe):

pipe.send(dict(name='Bob', spam=42)) # 传输一个字典

reply = pipe.recv() # 接收传输的数据

print('talker got:', reply)

if __name__ == '__main__':

(parentEnd, childEnd) = Pipe() # 创建两个 Pipe() 实例,也可以改成 conf1, conf2

child = Process(target=talk, args=(childEnd,)) # 创建一个 Process 进程,名称为 child

child.start() # 启动进程

print('parent got:', parentEnd.recv()) # parentEnd 是一个 Pip() 管道,可以接收 child Process 进程传输的数据

parentEnd.send({x * 2 for x in 'spam'}) # parentEnd 是一个 Pip() 管道,可以使用 send 方法来传输数据

child.join() # 传输的数据被 talk 函数内的 pip 管道接收,并赋值给 reply

print('parent exit')

结果:

parent got: {'name': 'Bob', 'spam': 42}

talker got: {'ss', 'aa', 'pp', 'mm'}

parent exit

希望本文所述对大家Python程序设计有所帮助。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值