非线性规划中带约束规划问题的TTK必要条件

目录

前言

一、KKT条件适用的优化问题

二、四个核心条件

2.1梯度条件(或称为平稳性条件)

2.2可行性条件

2.3互补松弛条件

2.3.1互补松弛条件的表述

2.3.1互补松弛条件的理解

2.4拉格朗日乘子非负性条件

参考资料


前言

KKT条件,即Karush-Kuhn-Tucker条件,是用于解决非线性约束优化问题的重要工具。KKT条件可以视为带约束优化问题的最优性条件,它是拉格朗日乘子法的推广。对于满足某些正则性条件的优化问题,KKT条件是找到最优解的必要条件,也在某些情况下是充分条件。

而说到TTK充分条件就不得不说到Lagrange函数,对于Lagrange函数的理解可以在前面的小记中查看。

相关小记:《优化性与线探索》《对于Lagrange函数的理解


一、KKT条件适用的优化问题

KKT条件适用于如下形式的非线性约束优化问题:
min     f(x)

s.t.        h_{i}(x)=0i=1,2,3,...,m

             g_{j}(x)\leq 0j=1,2,3,...,l

其中:

  • x\in \mathbb{R}^{n}是优化变量;
  • f(x)是目标函数;
  • h_{i}(x)=0是等式约束,共有m个;
  • g_{j}(x)\leq 0是不等式约束,共有l个。

KKT条件是关于这些不等式约束、等式约束、目标函数以及拉格朗日乘子的关系。

定理(K-K-T必要条件)f(x),h_{i}(x),g_{j}(x)在可行点x^{*}处一阶连续可微,向量集

\left \{ \triangledown h_{i}(x) ,\triangledown g_{j}(x)\right \}

线性独立。

如果x^{*}是局部最优解,则存在\omega _{i},\vartheta _{j}使得:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值