目录
前言
KKT条件,即Karush-Kuhn-Tucker条件,是用于解决非线性约束优化问题的重要工具。KKT条件可以视为带约束优化问题的最优性条件,它是拉格朗日乘子法的推广。对于满足某些正则性条件的优化问题,KKT条件是找到最优解的必要条件,也在某些情况下是充分条件。
而说到TTK充分条件就不得不说到Lagrange函数,对于Lagrange函数的理解可以在前面的小记中查看。
相关小记:《优化性与线探索》《对于Lagrange函数的理解》
一、KKT条件适用的优化问题
KKT条件适用于如下形式的非线性约束优化问题:
,
,
其中:
是优化变量;
是目标函数;
是等式约束,共有
个;
是不等式约束,共有
个。
KKT条件是关于这些不等式约束、等式约束、目标函数以及拉格朗日乘子的关系。
定理(K-K-T必要条件)设在可行点
处一阶连续可微,向量集
线性独立。
如果是局部最优解,则存在
使得: