Wannafly挑战赛14 A 直角三棱锥

题目描述 

在三维空间中,平面 x = 0, y = 0, z = 0,以及平面 x + y + z = K 围成了一个三棱锥。
整天与整数打交道的小明希望知道这个三棱锥内、上整点的数目。
他觉得数量可能很多,所以答案需要对给定的 M 取模。

输入描述:

输入有 1 ≤ T ≤ 105 组数据。
每组数据中,输入两个整数 0 ≤ K ≤ 109 + 7, 1 ≤ M ≤ 109 + 7,意义如题目描述。

输出描述:

对于每组数据,输出一个整数,为三棱锥内、上整点的数目对 M 取模。
示例1

输入

4
0 60
1 60
29 60
29 100007

输出

1
4
40
4960

题意:就是给你找出x + y + z <= k的正整数点的个数。。。

思路:这个题目卡了好久,一直没有推出公式来,幸好yhc是个数论大佬,才险些签到。。。

公式: f = (x + 1)*(x + 2)*(x + 3)/6 ;

怎么推出来的呢????

首先我们的知道一个重要公式:

  • formula
  • 证明:

  • 代码就很简单了。。。。直接暴力也不用逆元。。

#include<bits/stdc++.h>
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
using namespace std;
int n, m, k, t;

ll lpow(ll a, ll b) {
    ll ans = 1;
    while(b) {
        if(b&1) ans = ans*a%m;
        a = a*a%m;
        b >>= 1;
    }
    return ans;
}

int main()
{
   scanf("%d", &t);
   while(t--) {
        scanf("%d%d", &k, &m);
        ll a = k+1, b = k+2, c = k+3, ans = 0;
        if(a%2 == 0) a /= 2;
        else if(b%2 == 0) b /= 2;
        else if(c%2 == 0) c /= 2;
        if(a%3 == 0) a /= 3;
        else if(b%3 == 0) b /= 3;
        else if(c%3 == 0) c /= 3;
        ans = ((a*b%m)*c)%m;
        cout << ans << endl;
   }
   return 0;
}


评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值