# T1:

A. Game
time limit per test : 2 seconds
memory limit per test : 256 megabytes
input : standard input
output : standard output

Two players play a game.

Initially there are nn integers a1,a2,,ana1,a2,…,an written on the board. Each turn a player selects one number and erases it from the board. This continues until there is only one number left on the board, i. e. n1n−1 turns are made. The first player makes the first move, then players alternate turns.

The first player wants to minimize the last number that would be left on the board, while the second player wants to maximize it.

You want to know what number will be left on the board after n1n−1 turns if both players make optimal moves.

Input

The first line contains one integer nn (1n10001≤n≤1000) — the number of numbers on the board.

The second line contains nn integers a1,a2,,ana1,a2,…,an (1ai1061≤ai≤106).

Output

Print one number that will be left on the board.

Examples
input
Copy
3
2 1 3

output
Copy
2
input
Copy
3
2 2 2

output
Copy
2
Note

In the first sample, the first player erases 33 and the second erases 1122 is left on the board.

In the second sample, 22

is left on the board regardless of the actions of the players.

#include<bits/stdc++.h>
#define ll long long
using namespace std;

int n, a[1007];

int main()
{
//freopen("in.txt", "r", stdin);
while(~scanf("%d",&n))
{
for(int i  = 0; i < n; i++) scanf("%d",&a[i]);
sort(a, a+n);
if(n%2 != 0) printf("%d\n", a[n/2]);
else printf("%d\n", a[n/2 - 1]);
}
return 0;
}

# T2 :

B. Minesweeper
time limit per test : 1 second
memory limit per test : 256 megabytes
input : standard input
output : standard output

One day Alex decided to remember childhood when computers were not too powerful and lots of people played only default games. Alex enjoyed playing Minesweeper that time. He imagined that he saved world from bombs planted by terrorists, but he rarely won.

Alex has grown up since then, so he easily wins the most difficult levels. This quickly bored him, and he thought: what if the computer gave him invalid fields in the childhood and Alex could not win because of it?

He needs your help to check it.

A Minesweeper field is a rectangle n×mn×m, where each cell is either empty, or contains a digit from 11 to 88, or a bomb. The field is valid if for each cell:

• if there is a digit kk in the cell, then exactly kk neighboring cells have bombs.
• if the cell is empty, then all neighboring cells have no bombs.

Two cells are neighbors if they have a common side or a corner (i. e. a cell has at most 88 neighboring cells).

Input

The first line contains two integers nn and mm (1n,m1001≤n,m≤100) — the sizes of the field.

The next nn lines contain the description of the field. Each line contains mm characters, each of them is "." (if this cell is empty), "*" (if there is bomb in this cell), or a digit from 11 to 88, inclusive.

Output

Print "YES", if the field is valid and "NO" otherwise.

You can choose the case (lower or upper) for each letter arbitrarily.

Examples
input
Copy
3 3
111
1*1
111

output
Copy
YES
input
Copy
2 4
*.*.
1211

output
Copy
NO
Note

In the second example the answer is "NO" because, if the positions of the bombs are preserved, the first line of the field should be *2*1.

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn = 1e2+7;
int n, m;
char c[maxn][maxn];

int find(int a, int b)
{
int ans = 0;
for(int i = -1; i < 2; i++)
for(int j = -1; j < 2; j++)
if(c[a+i][b+j] == '*') ans++;
return ans;
}

void solve()
{
bool f = true;
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= m; j++)
{
if(c[i][j] == '*') continue;
else if(c[i][j] == '.') {
if(find(i, j) != 0) {
f = false;
break;
}
} else {
if(find(i, j) != (c[i][j] - '0')) {
f = false;
break;
}
}
}
}
if(f) puts("YES");
else puts("NO");
}

int main()
{
//freopen("in.txt", "r", stdin);
while(~scanf("%d%d",&n,&m))
{
for(int i = 0; i <= n+1; i++)
for(int j = 0; j <= m+1; j++)
c[i][j] = '.';
for(int i = 1; i <= n; i++)
{
getchar();
for(int j = 1; j <= m;j++)
scanf("%c",&c[i][j]);
}
solve();
}
return 0;
}

# T3:

C. Finite or not?
time limit per test : 1 second
memory limit per test : 256 megabytes
input : standard input
output : standard output

You are given several queries. Each query consists of three integers ppqq and bb. You need to answer whether the result of p/qp/q in notation with base bb is a finite fraction.

A fraction in notation with base bb is finite if it contains finite number of numerals after the decimal point. It is also possible that a fraction has zero numerals after the decimal point.

Input

The first line contains a single integer nn (1n1051≤n≤105) — the number of queries.

Next nn lines contain queries, one per line. Each line contains three integers ppqq, and bb (0p10180≤p≤10181q10181≤q≤10182b10182≤b≤1018). All numbers are given in notation with base 1010.

Output

For each question, in a separate line, print Finite if the fraction is finite and Infinite otherwise.

Examples
input
Copy
2
6 12 10
4 3 10

output
Copy
Finite
Infinite

input
Copy
4
1 1 2
9 36 2
4 12 3
3 5 4

output
Copy
Finite
Finite
Finite
Infinite

Note

612=12=0,510612=12=0,510

43=1,(3)1043=1,(3)10

936=14=0,012936=14=0,012

412=13=0,1

3

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn = 1e6;
int n, p[maxn], tot = 0;
ll a, b, c;
bool prim[maxn];

void get_prim()
{
for(int i = 2; i < maxn; i++) prim[i] = true;//初始化为质数
for(int i = 2; i < maxn; i++){
if(prim[i]) p[tot++] = i;//把质数存起来
for(int j = 0; j < tot && i * p[j] < maxn; j++){
prim[i * p[j]] = false;
if(i % p[j] == 0) break;//保证每个合数被它最小的质因数筛去
}
}
}

ll gcd(ll a,ll b) { return b == 0 ? a : gcd(b,a%b); }

void solve(ll m)
{
ll k = m;
for(int i = 0; i < tot&& k > 1&& p[i]*p[i] <= k; i++)
{
if(k%p[i] == 0)
{
while(b%p[i] == 0) b /= p[i];
while(k%p[i] == 0) k /= p[i];
}
}
if(k != 1) while(b%k == 0) b /= k;
}

int main()
{
get_prim();
//freopen("in.txt", "r", stdin);
while(~scanf("%d",&n))
{
while(n--)
{
scanf("%lld%lld%lld",&a, &b, &c);
ll d = gcd(a, b);
a /= d; b /= d;
ll k = gcd(b, c);
if(k == 1&&b != 1) {
printf("Infinite\n");
continue;
}
if(b == 1){
printf("Finite\n");
continue;
}
solve(k);
if(b == 1) printf("Finite\n");
else printf("Infinite\n");
}
}
return 0;
}

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn = 1e9;
int n;
ll a, b, c;

ll gcd(ll a,ll b) { return b == 0 ? a : gcd(b,a%b); }

void solve(ll m)
{
ll k = gcd(b, m);
while(k != 1)
{
b /= k;
k = gcd(b, m);
}
}

int main()
{
//freopen("in.txt", "r", stdin);
while(~scanf("%d",&n))
{
while(n--)
{
scanf("%lld%lld%lld",&a, &b, &c);
ll d = gcd(a, b);
a /= d; b /= d;
ll k = gcd(b, c);
if(k == 1&&b != 1) {
printf("Infinite\n");
continue;
}
if(b == 1){
printf("Finite\n");
continue;
}
solve(k);
if(b == 1) printf("Finite\n");
else printf("Infinite\n");
}
}
return 0;
}

# T4:

D. XOR-pyramid
time limit per test : 2 seconds
memory limit per test : 512 megabytes
input : standard input
output : standard output

For an array bb of length mm we define the function ff as

f(b)={b[1]if m=1f(b[1]b[2],b[2]b[3],,b[m1]b[m])otherwise,f(b)={b[1]if m=1f(b[1]⊕b[2],b[2]⊕b[3],…,b[m−1]⊕b[m])otherwise,

where  is bitwise exclusive OR.

For example, f(1,2,4,8)=f(12,24,48)=f(3,6,12)=f(36,612)=f(5,10)=f(510)=f(15)=15f(1,2,4,8)=f(1⊕2,2⊕4,4⊕8)=f(3,6,12)=f(3⊕6,6⊕12)=f(5,10)=f(5⊕10)=f(15)=15

You are given an array aa and a few queries. Each query is represented as two integers ll and rr. The answer is the maximum value of ff on all continuous subsegments of the array al,al+1,,aral,al+1,…,ar.

Input

The first line contains a single integer nn (1n50001≤n≤5000) — the length of aa.

The second line contains nn integers a1,a2,,ana1,a2,…,an (0ai23010≤ai≤230−1) — the elements of the array.

The third line contains a single integer qq (1q1000001≤q≤100000) — the number of queries.

Each of the next qq lines contains a query represented as two integers llrr (1lrn1≤l≤r≤n).

Output

Print qq lines — the answers for the queries.

Examples
input
Copy
3
8 4 1
2
2 3
1 2

output
Copy
5
12

input
Copy
6
1 2 4 8 16 32
4
1 6
2 5
3 4
1 2

output
Copy
60
30
12
3

Note

In first sample in both queries the maximum value of the function is reached on the subsegment that is equal to the whole segment.

In second sample, optimal segment for first query are [3,6][3,6], for second query — [2,5][2,5], for third — [3,4][3,4], for fourth — [1,2][1,2].

f(i, j) = f(i+1, j)^f(i, j - 1);

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn = 5e3+7;
int n, q;
ll a[maxn], dp[maxn][maxn], f[maxn][maxn];
bool vis[maxn][maxn];

void work(int l, int r)
{
vis[l][r] = true;
if(l == r) {
dp[l][r] = f[l][r] = a[l];
return;
}
if(!vis[l][r-1]) work(l, r - 1);
if(!vis[l+1][r]) work(l+1, r);
dp[l][r] = f[l][r] = f[l][r-1]^f[l+1][r];
dp[l][r] = max(dp[l][r], max(dp[l + 1][r], dp[l][r - 1]));
}

void solve()
{
int l, r;
scanf("%d%d", &l, &r);
printf("%lld\n", dp[l][r]);
}

int main()
{
//freopen("in.txt", "r", stdin);
while(~scanf("%d", &n))
{
memset(dp, 0, sizeof(dp));
memset(f, 0, sizeof(f));
memset(vis, 0, sizeof(vis));
for(int i = 1; i <= n; i++) scanf("%lld", &a[i]);
work(1, n);
scanf("%d", &q);
while(q--) solve();
}
return 0;
}


dp[ i ][ j ]：以 i 为起点，长度为 j 的序列的最大值；

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn = 5e3+7;
int n, q;
ll dp[maxn][maxn];

void init()
{
for(int j = 2; j <= n; j++)
{
for(int i = 0; i + j <= n+1; i++)
{
dp[i][j] = dp[i][j - 1]^dp[i+1][j - 1];
}
}
for(int j = 2; j <= n; j++)
{
for(int i = 0; i + j <= n+1; i++)
{
dp[i][j] = max(dp[i][j], max(dp[i+1][j - 1], dp[i][j - 1]));
}
}
}

void solve()
{
int l, r;
scanf("%d%d", &l, &r);
printf("%lld\n", dp[l][r - l + 1]);
}

int main()
{
//freopen("in.txt", "r", stdin);
while(~scanf("%d", &n))
{
memset(dp, 0, sizeof(dp));
for(int i = 1; i <= n; i++) scanf("%lld", &dp[i][1]);
init();
scanf("%d", &q);
while(q--) solve();
}
return 0;
}


• 广告
• 抄袭
• 版权
• 政治
• 色情
• 无意义
• 其他

120