chart.js 饼图显示百分比_【数据可视化.图表篇】饼图

1772aa6eceded0a270463a45f349e81d.png

上一次我们介绍了 Excel 其中两大男神:柱状图和折线图,这次小数接着带大家追另外一位憨态可掬的男神:饼图

(为了让大家有更直观的感受,基础图表篇系列文章里的图表都是借助 Excel 生成)

按套路,咱们还是先看官方解释:

饼图英文学名为 Sector Graph, 又名 Pie Graph。仅排列在工作表的一列或一行中的数据可以绘制到饼图中。饼图显示一个数据系列中各项的大小与各项总和的比例。饼图中的数据点显示为整个饼图的百分比。

打开 Excel,你可以很明显看出在饼图的目录下,包括了:二维饼图、三维饼图和圆环图三个大类。

总的来说,饼图的理解比较简单,就是用于表示总体中各部分的比例

饼图在可视化方面则有趣很多,有很多我们值得去玩的点,下面我将借助丰富的举例说明:

logo色应用

数据源如下:

40c98d4e0f7618af1fb24d80ad16d806.png

插入-选择生成环形图后,得到下图:

6dd946967fd31504d87f3e7030849427.png

分别两次点击红色或蓝色区域,即可修改填充色为 logo 色(本文中用到的都是 DataHunter 的 logo 色),然后简单修改标题和图例,得到优化效果:

d68b397cdff8296f956d67c07a2b52d2.png

优点:简单易操作

缺点:过于单薄

多色应用

单纯的 logo 色过于简单,怎么丰富拓展呢?聪明的小伙伴可能想到了:在一个环形图的基础上,多生成几个同心环形图,再进行着色不就行啦?没错,就是这样!

原理:引入辅助列,分别着色再合并

数据源:

351dc42dc636a05e1ff94310188ff185.png

刚开始是这样的,四个数据列生成了四个同心环:

f82958855141d17f922b2a88ae91e018.png

操作步骤:分别点击每个环形进行单独着色,再根据需要进行合并,添加标题、修改图例,就优化成了下图:

73a07b37e24041d54cb8ff070abb9deb.png

是不是比刚开始有层次一些?

局部放大

在整体的饼图中,有时需要对某个部分做重点突出展示, Excel 中的次坐标轴设置功能完全可以 hold 住!

原理:利用次坐标轴,画出两个饼图,然后做饼图分离

数据源如下:

2881e5bb65833c5fdc7b20791809b743.png

操作步骤:利用数据生成两个饼图(刚开始看不出来,两个饼图是完全重合在一起的),然后右键—修改图表系列—将其中一个饼图设置为次坐标—设置饼图分离,改变两个饼图的大小—最后将外围的饼图进行部分透明着色

是不是看着很复杂?无须纠结。这篇文章目的让大家理解饼图可视化思维的演变,你不必非得按着操作步骤做出来,而且 Excel 中操作确实较为繁琐,如果采用一些可视化工具或者 DataHunter 的后台进行生成,就会非常简单,后续我们会开辟专门的栏目给大家演示。

回过头来,小数通过上边步骤优化,得到了局部放大的饼图:

87d0614072ad18f28cc623827ec88b98.png

所以,DataHunter 最吸引大家的地方是有qian 途,对么?

南丁格尔玫瑰图

有人把南丁格尔玫瑰图当做是直方图的变形(区别是南丁格尔玫瑰图是圆形的直方图),但也有人把它当做饼图的变形(区别是半径不同)。

它的鼻祖长这样:

c44467e438784dc68ac029e60ff2601f.png

现代版经常长这样:

f69f64857d8afa8858d0883cdbd1f2fd.png

如果用 Excel 制作的话,这个涉及混合图表类型,追加图表序列,录制修改宏等一系列鬼东西,所以您还是了解一下就好,尽量不要那么狠的逼自己用 Excel 操作。如果您非得要挑战的话,具体操作方法请出门左转百度。

在应用方面,南丁格尔玫瑰图相比普通饼图,可在一个图表中集中反映多个维度方面的百分比构成数据,幅面小,信息量大,形式新颖,够高级,够给力。

实物辅助&超越想象

前面我们讲了通过对饼图的颜色、大小做变化来进行可视化。理论上现在你距离更酷炫的可视化只差两步了哦~

第一步:会借助实物,比如这样儿的:

46200b541c92dcb8000e47112d74fd99.png
@谷朴文化

0a9f81244db5f0acda76fd03135267f4.png
@Wired杂志

第二步:发挥想象 /邪恶的微笑,比如这样儿的:

16580d10a3d64564fce84b2640299b2f.png
@Simon 阿文

小结:饼图可视化可简单从改变饼图的颜色、突出某部分大小、改变某个比例的形状等方面着手,还可以借助实物发挥想象来做进一步优化。

最后借用爱因斯坦老爷爷的话来作为本文的结尾:“逻辑会把你从A带到B,想象力能带你去任何地方。”

所以要做好数据可视化,就请撒开你的想象力吧!

部分图片来源网络,侵删

欢迎关注公众号:数猎天下DataHunter-数据分析展示就用 DataHunter-

数据可视化大屏展示工具-免费试用​www.datahunter.cn?channel=weibo
a3f80c1c5bfb19b47c7f00d4e4174cc3.png
在Matplotlib库中,这三个函数分别用于绘制不同类型的数据可视化图表: 1. **line_chart** (折线图): ```python import matplotlib.pyplot as plt x_data = [数据点1, 数据点2, ..., 数据点n] # 横坐标数据 y_data = [对应点1, 对应点2, ..., 对应点n] # 纵坐标数据 plt.plot(x_data, y_data) plt.xlabel('X轴标签') # X轴标签 plt.ylabel('Y轴标签') # Y轴标签 plt.title('标题') # 图表标题 plt.show() # 显示图形 ``` 2. **pie_chart** (饼图): ```python labels = ['部分A', '部分B', ..., '部分N'] # 饼图各个部分的标签 sizes = [部分A大小, 部分B大小, ..., 部分N大小] # 各部分的比例数据 fig1, ax1 = plt.subplots() ax1.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=140) # 自动百分比显示 ax1.axis('equal') # 保持圆形 plt.title('饼状图') plt.show() ``` 3. **fl_chart** (这可能是某种特定的函数名,如finance chart,实际的Matplotlib中并无此直接名称。如果是指金融时间序列折线图,可以这样做): ```python import pandas as pd df = pd.read_csv('financial_data.csv') # 假设有个CSV文件包含金融数据 df['date'] = pd.to_datetime(df['date']) # 将日期列转换为datetime类型 plt.figure(figsize=(10,6)) plt.plot(df['date'], df['price'], label='价格') plt.plot(df['date'], df['volume'], label='成交量') plt.legend() plt.title('金融时间序列折线图') plt.show() ``` 请注意,`fl_chart` 可能需要根据具体的金融数据结构和你的需求定制。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值