python 人脸识别调整人脸大的距离_Python 人脸识别就多简单,看这个就够了!

原标题:Python 人脸识别就多简单,看这个就够了!

基于业内领先的 C++ 开源库 dlib 中的深度学习模型,用 Labeled Faces in the Wild 人脸数据集进行测试,有高达99.38%的准确率。

1.安装

最好是使用 Linux 或 Mac 环境来安装,Windows 下安装会有很多问题。在安装 face_recognition 之前你需要先安装以下几个库,注意顺序!

1.1 先安装 cmake 和 boostpip installcmake

pip installboost

1.2 安装 dlibpipinstall dlib

此处安装可能要几分钟。如安装出错,建议使用 whl 文件来安装

下载地址:https://pypi.org/simple/dlib/

1.3 安装 face_recognition

face_recongnition 一般要配合 opencv 一起使用

pip installface_recognition

pip installopencv-python

2. 人脸识别

af5278e4cc1215cc6951a1ddaa0b4038.png

首先获取人脸中的信息

kobe_image = face_recognition.load_image_file( "kobe.jpg") # 已知科比照片

jordan_image = face_recognition.load_image_file( "jordan.jpeg") # 已知乔丹照片

unknown_image = face_recognition.load_image_file( "unkown.jpeg") # 未知照片

kobe_face_encoding = face_recognition.face_encodings(kobe_image)[ 0]

jordan_face_encoding = face_recognition.face_encodings(jordan_image)[ 0]

unknown_face_encoding = face_recognition.face_encodings(unknown_image)[ 0]

代码中前三行分别是加载三张图片文件并返回图像的 numpy 数组,后三行返回图像中每个面部的人脸编码

然后将未知图片中的人脸和已知图片中的人脸进行对比,使用 compare_faces 函数, 代码如下:

known_faces = [

kobe_face_encoding,

jordan_face_encoding

]

results = face_recognition.compare_faces(known_faces, unknown_face_encoding) # 识别结果列表

print( "这张未知照片是科比吗? {}".format(results[0]))

print( "这张未知照片是乔丹吗? {}".format(results[1]))

运行结果如下:

647fbd798075c2aaef1445eaa173d6a6.png

3. 人脸标注

face_locations = face_recognition.face_locations(unknown_image)

face_encodings = face_recognition.face_encodings(unknown_image, face_locations)

函数传入两个参数 ,返回以上,右,下,左固定顺序的脸部位置列表的作用是将已知脸部位置和未知面部编码进行比较,得到欧式距离~~~具体是什么我也不知道,距离就相当于相识度。

7b1f8a2ea7f7c43b58edec42d9772ed1.gif

函数说明:face_distance(face_encodings, face_to_compare)

face_encodings:已知的面部编码

face_to_compare:要比较的面部编码

本次图片前面两张没有变化,第三张换成了科比和乔丹的合影,最终运行之后结果如下:

4795eb8519d8df7910d28b2f3dca698e.png

importface_recognition

fromPIL importImage, ImageDraw

importnumpy asnp

defdraws:

kobe_image = face_recognition.load_image_file( "kobe.jpg")

kobe_face_encoding = face_recognition.face_encodings(kobe_image)[ 0]

jordan_image = face_recognition.load_image_file( "jordan.jpeg")

jordan_face_encoding = face_recognition.face_encodings(jordan_image)[ 0]

known_face_encodings = [

kobe_face_encoding,

jordan_face_encoding

]

known_face_names = [

"Kobe",

"Jordan"

]

unknown_image = face_recognition.load_image_file( "two_people.jpeg")

face_locations = face_recognition.face_locations(unknown_image)

face_encodings = face_recognition.face_encodings(unknown_image, face_locations)

pil_image = Image.fromarray(unknown_image)

draw = ImageDraw.Draw(pil_image)

for(top, right, bottom, left), face_encoding inzip(face_locations, face_encodings):

matches = face_recognition.compare_faces(known_face_encodings, face_encoding)

name = "Unknown"

face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)

best_match_index = np.argmin(face_distances)

ifmatches[best_match_index]:

name = known_face_names[best_match_index]

draw.rectangle(((left, top), (right, bottom)), outline=( 0, 0, 255))

text_width, text_height = draw.textsize(name)

draw.rectangle(((left, bottom - text_height - 10), (right, bottom)), fill=( 0, 0, 255), outline=( 0, 0, 255))

draw.text((left + 6, bottom - text_height - 5), name, fill=( 255, 255, 255, 255))

deldraw

pil_image.show

pil_image.save( "image_with_boxes.jpg")

4. 给人脸美妆

image = face_recognition.load_image_file( "bogute.jpeg")

face_landmarks_list = face_recognition.face_landmarks(image)

遍历列表中的元素,修改眉毛

d.polygon(face_landmarks[ 'left_eyebrow'], fill=( 68, 54, 39, 128))

d.polygon(face_landmarks[ 'right_eyebrow'], fill=( 68, 54, 39, 128))

d.line(face_landmarks[ 'left_eyebrow'], fill=( 68, 54, 39, 150), width= 5)

d.line(face_landmarks[ 'right_eyebrow'], fill=( 68, 54, 39, 150), width= 5)

给人脸涂口红

d.polygon(face_landmarks[ 'top_lip'], fill=( 150, 0, 0, 128))

d.polygon(face_landmarks[ 'bottom_lip'], fill=( 150, 0, 0, 128))

d.line(face_landmarks[ 'top_lip'], fill=( 150, 0, 0, 64), width= 8)

d.line(face_landmarks[ 'bottom_lip'], fill=( 150, 0, 0, 64), width= 8)

增加眼线

d.polygon(face_landmarks[ 'left_eye'], fill=( 255, 255, 255, 30))

d.polygon(face_landmarks[ 'right_eye'], fill=( 255, 255, 255, 30))

d.line(face_landmarks[ 'left_eye'] + [face_landmarks[ 'left_eye'][ 0]], fill=( 0, 0, 0, 110), width= 6)

d.line(face_landmarks[ 'right_eye'] + [face_landmarks[ 'right_eye'][ 0]], fill=( 0, 0, 0, 110), wid= 6)

根据以上代码做了,我用实力不行,打球又脏的 "大嘴" 博格特来做演示!

左边是原图,右边是加了美妆后的效果

92b7b64cee728ac1d570282d7e7546f8.png

你打球的样子像极了 cxk!

责任编辑:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值