python图像缺陷识别算法_python opencv实现图片缺陷检测(讲解直方图以及相关系数对比法)...

本文介绍了使用Python和OpenCV通过直方图及相关系数对比法来检测图像缺陷的方法。首先,将图片转换为灰度,然后计算直方图,接着使用`compareHist`函数进行相关性比较,设定阈值判断图像是否合格。通过这种方法,可以批量检测和标记图像是否存在缺陷。
摘要由CSDN通过智能技术生成

一、利用直方图的方式进行批量的图片缺陷检测(方法简单)

二、步骤(完整代码见最后)

2.1灰度转换(将原图和要检测对比的图分开灰度化)

灰度化的作用是因为后面的直方图比较需要以像素256为基准进行相关性比较

img = cv2.imread("0.bmp")

#原图灰度转换

gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

#循环要检测的图,均灰度化

for i in range(1, 6):

t1=cv2.cvtColor(cv2.imread(str(i)+".bmp"),cv2.COLOR_RGB2GRAY)

2.2 直方图计算(结果其实是二维的图表--用画图的方式展示)

calcHist参数讲解

第一个参数: 必须为列表[],哪怕只有一个图片 ,image输入图像

channels::传入图像的通道, 如果是灰度图像,那就不用说了,只有一个通道,值为0 ,如果是彩色图像(有3个通道),那么值为0,1,2,中选择一个,对应着BGR各个通道。这个值也得用[]传入。

mask:掩膜图像。 如果统计整幅图,那么为none 。主要是如果要统计部分图的直方图,就得构造相应的炎掩膜来计算。

histSize:灰度级的个数, 需要中括号,比如[256]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值