手机信令数据怎么获得_手机信令数据支持城镇体系规划的技术框架

作 者 信 息

钮心毅,康 宁,王 垚,谢昱梓

(同济大学 建筑与城市规划学院 高密度人居环境生态与节能教育部重点实验室,上海 200092)

【摘要】提出了一个应用手机信令数据支持城镇体系规划的技术框架,将其应用于城镇体系规划中的空间结构、等级结构、中心城市腹地、区域重要交通设施服务范围分析。首先依据手机信令数据特征,提出了从手机信令数据中计算跨镇出行的出行链,获得城镇联系度的方法。并结合城镇体系规划的实践案例,分别提出了城镇体系中的空间结构、等级结构、中心城市腹地、区域重要交通设施服务范围等分析的技术框架与应用途径。手机信令数据有效弥补了传统静态数据的不足,能作为城镇体系规划的基础数据之一。

【关键词】城镇体系规划;手机信令数据;城镇联系度;空间结构

【中图分类号】TU984.17 【文献标识码】A 【文章编号】1672-1586(2019)01-0018-07

引文格式:钮心毅,康 宁,王 垚,等. 手机信令数据支持城镇体系规划的技术框架[J].地理信息世界,2019,26(1):18-24

正文

0 引 言

城镇体系规划是我国城乡规划体系中的法定规划,是城乡规划的重要组成部分。城镇体系规划是在一个特定范围内合理进行城镇布局,优化区域环境,配置区域基础设施,明确不同层次的城镇地位、性质和作用,综合协调相互的关系,实现区域可持续发展。城镇之间联系是城镇体系规划的基础。传统的中心地理论是城镇体系规划的重要理论基础。近年在区域研究中出现的中心流理论,对国内区域规划、城镇体系规划也产生了影响。从中心地、中心流等基础理论出发,城镇之间联系一直是区域研究重要的基础数据。现有的城镇体系规划中,对城镇等级、职能、空间结构乃至区域基础设施协调都需要有城镇之间联系数据支持。

测度城镇之间联系是对城镇之间某种“流”的测度,以人流、物流、信息流等流向、流量指标分析城市间功能关系。目前实际应用中有采用电话通讯联系方向、铁路或公路发车班次、企业关联网络等数据。随着移动通信普及,从手机信令数据中获取居民的时空活动规律已成为可能,国内外学者已经展开相关的研究。手机信令数据特点是比较连续、被动记录了手机用户空间行为轨迹特征,相比客运交通班次等数据更能反映城镇之间的真实出行联系情况。本文以手机信令数据获取的城镇联系度为基础,提出城镇体系规划中的空间结构、等级结构、中心城市腹地、区域重要交通设施服务范围等分析的技术方法,为城镇体系规划实践提供支持。

1 城镇联系度计算

1.1 手机信令数据用于城镇体系规划优势

手机信令数据是一种时空轨迹大数据,是手机用户在移动通信网中活动留下的时空轨迹。其重要特点是在时间分辨率上较为连续。在手机持续开机状态下,一般以至少1 h的间隔连续记录用户空间位置。目前情况下,在去除位置连续重复的信令后,4G用户人均信令数量约为每日150条。一个400多万用户的大城市,每日信令总数量就有约6亿条,所以手机信令数据是一种典型的大数据。手机信令数据记录空间位置是以通信基站定位。一个基站覆盖的空间范围远小于一般城镇、街道行政区划范围,满足城镇体系规划中空间单元精度要求。

手机信令数据能反映居民在城镇之间出行流动,与企业关联数据、信息联系数据等类似,都是体现城镇间的功能联系,当前居民跨城镇出行一般都是使用某种公共或私人交通工具进行,存在较明显缺陷。客运班次无法反映交通工具实际载客率,也无法统计城镇之间私人交通方式的出行联系,因此手机信令数据反映的城镇人员流动相当于城镇之间全模式的客运交通联系。如果手机信令数据的时间序列能持续一个月以上,那么就能够很好地反映居民在城镇之间的出行规律。

1.2 手机信令数据测算城镇联系度

手机信令数据反映的居民出行时空轨迹,在城镇体系尺度内一般是从常住地所在的城镇出发到目的城镇,出行可能同时多个目的地,也会途径多个城镇,最终回到常住地所在城镇,手机信令数据都会记录下该过程的时空位置信息。本研究采用了两种从手机信令数据中获取的城镇联系度。

1)按照居民跨城镇的出行链的顺序,组合成一组连续跨城镇的起讫点组合,称作OD出行联系,如图1a所示。这种出行联系体现了途经城镇之间的联系,并未反映出常住地所在城镇和真实目的地之间的直接功能联系。

2)在上述OD出行联系的基础上,从出行所经过的所有城镇中区分中途停留地、出行目的地城镇,称作跨城镇出行链,如图1b所示。出行链由“常住地——出行目的地——常住地”组成,从常住地(居住地)出发,跨越空间单元出行后,再次返回常住地为一次跨城镇出行链。出行链中常住地是依据连续多日夜间在同一个位置及附近重复长时间停留,该位置视为居民的居住地,居住地所在城镇为常住地城镇。出行链中目的地识别是每一条出行链中每一日最多一个日间目的地、一个夜间目的地。如一日完成的出行链,从用户离开常住地后,在日间多个停留地中选择一个停留时间最长的城镇作为出行目的地。如多日完成的出行链,则每一日将日间停留时间最长的城镇作为日间目的地、夜间停留时间最长的城镇作为夜间目的地,直至返回常住地,出行链结束。

feba645c2a340b2455ff1cedca54c3a1.png

图1 两种城镇联系度测算模式

Fig.1 Two models for measuring the degree of urban-rural connections

城镇联系度可以通过OD出行联系、跨城镇出行链两种方式进行测算。两者都可以反映居民跨城镇出行特征,但各自适合场合不同。跨城镇出行链是各个目的地与常住地之间分别计一次城镇联系,得出各个城镇之间联系度,是抽象的城镇之间人流联系,更符合区域研究中的城镇之间联系概念。OD联系是直接由每一次出行起讫点形成的,直接表征出行特征,更符合交通工程上出行的概念。

2 城镇体系空间结构分析

2.1 由跨城镇出行链测度城镇体系空间结构

跨城镇出行链测度城镇体系空间结构,是获得到区域内各个城镇的居民出行的目的地,汇总形成区域城镇间出行关联网络,体现了城镇间直接的功能联系,可以作为城镇体系空间结构中联系轴的分析依据。

以珠江三角洲城镇体系为例,研究范围是珠三角城市群核心区以及深圳未来经济圈,包括了珠三角城市群核心区广州、深圳、东莞、佛山、珠海、中山和惠州7个城市以及东部的河源、汕尾2个城市。空间单元以市县为基础,按照各自的行政边界进行划分。在连续30日内,上述珠三角“7+2”城市群范围内识别出常住地的居民共产生了25 204 260人次跨越市县空间单元的跨城镇联系。将这些联系表达在地理空间上,如图2所示,就能发现珠三角城市群以广州和深圳为核心,以广州-深圳为联系轴的东岸联系强于以广州-佛山-中山-珠海为联系轴的西岸,分别构成了珠三角空间结构中最重要的主轴和次轴联系,深圳除了与广州的强联系外,与惠州以及较远端的河源、汕尾都有一定的联系。

77a6802863930315411871ed0e97337d.png

图2 手机信令数据测度的珠三角城市群的城镇联系

Fig.2 Uisalization of the urban-rural connections in Pearl River Delta agglomeration measured by mobile phone signaling data

《广东省城镇体系规划(2010-2020)》提出了珠三角城镇群核心区内部形成“三横三纵”6条城镇发展轴,如图3所示。将手机信令测算的空间结构轴线与《广东省城镇体系规划(2010-2020)》对照,可以发现当前广深城镇发展轴已经形成,广珠城镇发展轴也已经成型;东西向的城镇间出行联系较弱,规划设想中的北部城镇发展轴、江惠城镇发展轴、南部滨海城镇发展轴、大亚湾—惠阳—惠州—博罗城镇发展轴还尚未形成。

e6ff89387772184843e3a0ca8b89bd95.png

图3 广东省城镇体系规划(2010-2020)中的城镇空间结构

Fig.3 The urban spatial structure in the urban system plan of Guangdong province (2010-2020)

2.2 由跨城镇OD联系测度城镇体系空间结构

跨城镇OD出行联系测度城镇体系空间结构,是以每一条OD出行联系“起点——终点”位置分别按各个城镇进行汇总,能得到区域内各个城镇之间的实际出行联系流量,也可以作为城镇体系空间结构中联系轴的分析依据。以南宁市域城镇体系为例,研究范围包括南宁市下辖7区5县。采用连续一个月的手机信令数据,识别出全市域常住用户数406.7万人。典型日日均OD出行联系309.6万条,通过与周边城市对外出入口的OD出行联系数据来判断城市对外主要联系方向,确定城市发展轴线。建立“市域内中心城区出发——城市主要出入口”“城市主要出入口——中心城区到达”的联系。这种测算方式包括了由铁路、高速公路、国道、省道进出市域的人数。

通过计算典型休息日和工作日的出行OD,测算各个方向出入中心城区的人流数量。最终根据出入口OD流量数据判断城市对外主要联系方向。根据图4可以看出,南向是南宁中心城区的主要对外联系方向,出行量占总出行人数的42.3%(南晓镇、苏圩镇出入口),东向是南宁中心城区的第二位对外联系方向,占总出行人数的16.2%(黎塘镇出入口),北向是南宁中心城区最弱的对外联系方向,仅占9.2%(百岁滩出入口)。与更大范围的图5所示的北部湾城镇群的空间结构进行对照可以看出:南宁市域向南联系与北部湾城市群主轴(南钦城镇发展轴线)方向一致,向东联系与桂中-桂北城镇发展轴方向一致;南宁市域的空间结构的联系轴方向与北部湾城镇群的空间结构发展轴线一致。

10b9cf44e6b66857ecf0faee72228e32.png

图4 手机信令数据测度的南宁城市对外主要联系方向

Fig.4 Main directions of the external links of Nanning city measured by mobile phone signaling data

647799f652d00ee5cf80694fc1411b38.png

图5 北部湾城市群空间结构

Fig.5 The spatial structure of Beibu Gulf urban agglomeration

3 城镇体系等级结构分析

城镇体系等级结构是城镇体系规划的另一重要内容。传统城镇等级体系结构分析采用“位序—规模”法,用城镇规模作为分析城镇等级的依据,很难考虑各城市之间的相互作用。城镇的中心性是衡量城镇等级高低的重要指标,需要有城镇之间相互作用分析为基础。城镇之间联系度是分析中心性的重要手段。跨城镇出行链比OD出行联系更能反映城镇间直接功能联系,来判断区域内城镇的中心性,可以作为传统“位序—规模”法的重要补充。

优势流是根据一个城市某种要素的相对较高流向去判断该城市在城镇体系中的地位,具体包括最大优势流、第二大优势流等较高优势流。使用手机信令数据测算得出的城镇之间联系流向,在每一城市的吸引流向中计算汇集优势流的数量,作为中心性指标。首先比较从每一城镇出发至其他城镇联系流,按人次数量确定每一城镇出发最大优势流、第二大优势流的流向。其次,以每一城镇作为目的地,汇总从其他城镇流入优势流数量,按各自吸引的优势流数量确定该城镇的中心性,从而用于城镇等级分析。

以江西省昌九区域城镇体系为例,研究范围包含南昌市、九江市、抚州市、宜春市4个地级市全部行政辖区以及上饶市的鄱阳县、余干县、万年县。在连续37日内,从手机信令数据中识别出常住地居民共产生了2 296 630人次跨城镇的联系。使用优势流方法,计算上述范围内40个县城以上城市之间的最大优势流、第二大优势流,将各个城市以汇集到优势流数量,采用自然断裂法分为4个等级,如图6所示。

05fcc6dc29a2a33961f9e6f05d9f8473.png

图6 昌九区域40个城市优势流分析

Fig.6 The dominant flow analysis of 40 cities in Changjiu region

本研究所处的昌九地区具有明显的单中心体系。南昌市区是单中心体系中的第一等级城市,但第二级城市很难用简单的城市规模比较的方法确定,九江、抚州两个城市市区人口规模差异不大。以优势流的结果看,南昌市区在区域内网络吸引流向的中心性上具有绝对优势,是等级体系的第一级城市,汇集了23个城市的最大优势流、14个城市的第二大优势流。九江市区汇集6个城市的最大优势流、4个城市的第二大优势流;抚州市区汇集2个城市的最大优势流、8个城市的第二大优势流。九江市区、抚州市区均可以列入第二级城市。其中,抚州市区汇集优势流城市的覆盖范围更广,在区域南部的主导性较为显著,从优势流角度出发,抚州市区在昌九区域城镇体系等级结构中的地位高于九江市区。

传统的方法依据城镇规模直接测度城镇体系的等级,对于城镇规模差异不大的城镇,难以准确地确定城镇体系等级差异。通过昌九区域的案例可以看出,规模接近城市在区域中的中心性会有显著差异。利用优势流法测算城市中心性是传统方法有效的补充。

4 中心城市腹地与城市地位比较

分析城市腹地范围是确定城镇体系空间结构、确定中心城市的区域地位的重要依据之一。城市的腹地范围是反映中心城市与周边地区关系的重要依据。随着技术的发展,获取人流、物流、信息流等“流”数据相对容易,以真实的“流”数据替代模型测度城市腹地,可以更准确地反映城市与周边地区之间的联系情况,因此手机信令数据能用于分析居民出行形成的城市腹地。

4.1 测算中心城市腹地

分析城市的腹地时,仍然以手机信令数据建立的“常住地——出行目的地——常住地”跨镇出行链进行测算人流联系,计算出每个城镇与中心城市的出行联系量比例。采用归大法,取比例最高的中心城市作为该城镇隶属的中心城市势力范围。如果某个中心城市的联系量比例高于50%,那么该城镇是该中心城市较明显的势力范围。如果中心城市的联系量比例均低于50%,则该城镇是多个中心城市影响的争夺区,此时该城镇仍划入占比最大的城市势力范围,但是该中心城市的影响并未占绝对主导地位。据此划分研究区域中中心城市的势力圈。

仍以珠三角城市群为例,计算出每个城镇与9个中心城市的出行联系量比,如图7所示。深圳、广州的腹地势力范围超越了自身的市域行政范围,表明了这两个城市在区域内的核心地位。东莞、惠州、汕尾部分地区成为深圳势力范围;佛山、惠州部分地区成为广州的势力范围。这种从城镇之间吸引流动来分析中心城市腹地的方法是传统数据源难以做到的。

f4cfcfcd0948a7c06145cf360907ac32.png

图7 珠三角9个城市的腹地划分

Fig.7 Hinterland division of 9 cities in the Pearl River Delta

4.2 中心城市腹地用于城市地位比较

中心城市腹地还可进一步用于城市地位的比较上。如果划入中心城市空间范围不一样,会导致计算得出的腹地、势力范围也会变化。使用此方法,可以确定比较城市的区域地位特征。仍以珠三角范围为例,广州存在中心城区、都会区以及市域3个空间层次,如图8所示,深圳存在中心城区、市域两个空间层次。因此分别以不同层次中心城市范围比较深圳、广州的腹地。

610188e1341427edd43754be189956fb.png

a 广州中心城区与深圳中心城区的比较

a Comparing the central city of Guangzhou and Shenzhen city

19a00821b35443b25aadbea2e4715579.png

b 广州都会区与深圳市域的比较

b Comparing metropolitan area of Guangzhou and Shenzhen city

e202d0a6cb3a66ef8a0a40c1d4b8ed02.png

c 广州市域与深圳市域的比较

c Comparing Guangzhou and Shenzhen city

图8 广州与深圳的腹地对比

Fig.8 Comparison of the hinterlands of Guangzhou and Shenzhen city

1)分别以广州中心城区、深圳中心城区作为中心城市,划分两者在珠三角范围内腹地。腹地划分后的势力范围中,深圳仅占了32.63%的面积,远小于广州。

2)以广州都会区为中心城市,深圳中心城市扩大到深圳市域,将原二线关外的宝安区、光明区、龙华等6个区作为中心城市,同样方法划分广州、深圳在珠三角范围内腹地。由此得到的深圳势力范围面积占到了59.22%,明显超过了广州。东莞、汕尾以及惠州、河源大部地区成为深圳市域的腹地。

3)再将广州中心城市范围扩大到广州市域、深圳仍以市域作为中心城市,划分两者在珠三角范围内腹地。深圳的势力范围面积占比为55.97%,依然超越广州市域,未再有明显的变化。

这3个层面中心城市腹地的比较,深圳原二线关外的宝安区、光明区、龙华等6个区在深圳与珠三角区域的联系中起到了关键作用。这可能与深圳原二线关外聚集相当规模的制造业有关。这种以人流出行联系范围比较中心城市在区域中地位的方法是传统数据难以实现的。

5 区域交通基础设施服务范围

统筹安排区域交通运输等重要交通设施是城镇体系规划中另一项重要内容。高铁站、机场等设施同时服务多个城镇。分析同一区域中相邻的设施各自服务范围、各自服务绩效,就能发现问题,为相应的规划策略制定提供依据。

手机信令数据用于区域交通基础设施协调,仍使用居民出行的城镇联系度。传统方法一般采用设施用地面积、设施客运量等数据比较区域内各个设施的运行状况,但无法得知使用者的来源地、设施服务范围。在城镇体系规划中,协调机场等重要交通设施,关键就是协调设施的服务范围。

使用从手机信令数据中获取设施使用者的时空轨迹,以城镇联系度算法为基础,略作变化,能用于重要交通设施服务范围测算。同样应用出行链的概念,建立“居住地——交通设施”联系。对于从交通设施出发的旅客,从其轨迹中测算其出发前夜的夜间最长停留位置作为出发日居住地,建立“出发地——交通设施”出行链。对于通过交通设施到达的旅客,从其轨迹中测算其出发到达当日夜间最长停留位置作为到达日目的地,建立“交通设施——目的地”出行链。由此基础上测算各个交通设施的服务范围。

以珠江三角洲的广州白云机场、深圳宝安机场为例,广州白云机场、深圳宝安机场是珠三角区域中两大重要机场,也是城市群规划中需要重点关注、协调的重要基础设施。通过2017年4月一个月的手机信令数据识别出宝安机场430 663位到发旅客出发地、目的地,白云机场识别出930 757位到发旅客出发地、目的地。对照机场客流统计数据,同月宝安机场的总客运量3 416 200人次、白云机场总客运量为4 877 400人次。两个机场本身也有客流规模上的差异。

服务范围计算是使用了手机信令识别出机场出发旅客及其出发居住地、到达旅客及其目的居住地,可以得到每一个到发旅客“居住地——交通设施”出行链。按街道(镇)为空间单元,分别汇总两个机场到发旅客的出发地、居住地,得到了每个机场的实际服务范围。在服务范围计算的基础上,若某街道(镇)的白云机场到发量占到总到发量的50%及以上,将该街道(镇)定义为白云机场的势力范围,反之即为宝安机场的势力范围,如图9所示。

e4de9b3f7ac04d26a9c81e25ea91158c.png

图9 白云机场与宝安机场服务范围比较

Fig.9 Comparison of the service areas between Baiyun airport and Bao'an airport

在广州、深圳、东莞、佛山、中山、珠海、惠州、河源、汕尾9个地级市的范围内,白云机场与宝安机场各自主导势力范围面积比为59%:41%。白云机场势力范围明显大于宝安机场。通过手机信令数据测算的旅客活动轨迹,得到了两个机场的实际服务范围的差异。两个机场不仅有客运量的差异,更有服务范围的差异。虽然两个机场在珠三角区域内的路上交通条件非常接近,但还是有着明显的服务范围差异。即便在深圳市域周边,宝安机场服务占有率也没有普遍到达70%以上。这是传统依靠机场客运统计数据所无法做到的。

在城镇体系规划中,对重要交通设施的实际服务范围进行分析也与手机信令数据的定位精度相关。由于基站定位的空间分辨率,占地面积100 hm2以上的设施比较适合于使用手机信令数据评估其服务范围。

6 技术途径

基于上述应用方向,针对城镇体系规划内容,使用手机信令数据,通过“OD出行联系”和“跨镇出行链”两种模式测算城镇联系度,构建了如图10所示的手机信令数据支持城镇体系规划的技术框架。

535c71fad585efc59833d8f55bf5fd72.png

图10 手机信令数据支持城镇体系规划的技术框架

Fig.10 The technical framework for urban system planning with mobile phone signaling data

在城镇体系的城镇空间结构规划中,基于“OD出行联系”测算城镇联系度,通过联系强度比较和出入口流量汇总的方法,测度区域城市联系方向与联系强度。在城镇体系的城镇等级结构规划中,基于“常住地——出行目的地——常住地”的跨镇出行链,通过优势流测算城市中心性。在城镇体系的城镇中心腹地划分中,使用“常住地——出行目的地——常住地”的跨镇出行链,通过归大法比较城市吸引力及影响范围。在区域交通设施规划中,基于“出发地——交通设施——目的地”的跨镇出行链来测算城镇联系度,通过主导势力范围测算交通设施的实际服务范围。

7 结束语

将手机信令数据用于城镇体系规划,其优势在于手机信令数据记录了居民在城镇之间出行流动的时空轨迹,相当于城镇之间全模式客运交通流,能够用于测算城镇之间的联系度。本文讨论了手机信令数据支持城镇体系规划的适用领域、相应的技术方法,提出一种将大数据融入现有城乡规划体系的途径。手机信令数据中获取的跨城镇出行链、出行OD联系两种城镇联系度方法可以用在城镇体系中空间结构、等级结构、中心城市腹地、区域重要交通设施服务范围4个方面。已有的应用案例表明,通过使用城镇联系度,从城镇之间的“流”出发为上述4个方面提供了新的技术手段,弥补了传统数据的不足。当前的手机信令数据所表示的是城镇之间居民出行联系,不能代替城镇之间信息流、经济流、物流等。如果需要全面认识城镇之间联系,还需要其他能表示信息流、经济流、物流等联系的“流”数据。

上述手机信令数据适用场合均是对城镇体系现状分析,能量化测算城镇之间的“流”联系,能更好地认识、理解城镇之间的相互作用,发现城镇体系现状特征。在当前城镇体系规划中可以支持现状分析,也可以用于比较规划策略与现状之间的差异,为规划决策提供量化支撑。从当前技术来看,还做不到预测从现状的城镇之间联系预测未来城镇之间联系。如何用于规划预测尚有待于数据分析技术的进步。

本文针对手机信令数据提出了应用技术框架。这种从居民城镇之间出行轨迹测算出城镇联系进而支持城镇体系分析的途径,也能适用于其他类型的移动定位大数据。如果某种定位数据能较为连续地记录居民出行时空轨迹,定位数据来源又有一定普及型,不集中在某种特定人群,那么也能使用本文的技术途径支持城镇体系规划分析。

db2494f2a71e77abfea8410ee6805097.png

本期回顾

285c907850e0cfdece8b3ef2a4bc74fe.png

专家论坛

·地理空间大数据服务自然资源调查监测的方向分析

城乡规划大数据应用

·大数据在城市规划中的应用研究综述

·多源空间大数据的获取及在城市规划中的应用

邮箱变更声明

·《地理信息世界》邮箱变更声明

网站开通公告

·关于开通《地理信息世界》网站的公告

诚聘特约审稿专家

·诚聘|《地理信息世界》诚聘特约审稿专家

专题组稿

·“大数据在城乡规划中的应用研究”专题征稿启事

·约稿函|《地理信息世界》关于开辟“博士综述论坛” 专栏的约稿函

b924df6173d187b4c8db882f14ad5a8b.png

851d465d3b2e785a56b77c4549d9647e.png

a414d0e3760ed2e18e0d4742ea90c0a4.png

4a1b6e79d24aeb50df21192e845307f4.png

dc05cc975d8482683ec262b078d68600.png

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 打赏
    打赏
  • 扫一扫,分享海报

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
©️2022 CSDN 皮肤主题:深蓝海洋 设计师:CSDN官方博客 返回首页

打赏作者

weixin_39793189

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值