产品经理用AI,跟普通人有什么不同?

最近跟一个产品经理朋友聊天,他们公司最近单独拉一个只有产品经理的 team,要在接下来半年把过去几年火过的产品工具,“加上 AI 驱动”重新做一遍。

美其名曰“抓住 AI 浪潮的红利”。

这不是今天的重点,重点是他在高频的用 AI 设计产品一段时间后,对“使用 AI”这件事有了全新的认知:

产品经理用 AI,跟普通人完全不一样,至少要高一个维度才行

以前用 AI 工具处理问题时,AI 犯的各种错误都在“明面”上放着,错了追问几轮或者重开一个窗口就解决了,没感觉有啥。

但是自从他把 AI 拉到自己的阵营成为“队友”后,他发现这家伙控制起来还是挺难的。

对的,AI 对他来说,已经从“甲乙方”关系,变成“同事”了。

不仅“关系”变了,AI 的“所作所为”也不在“明面”上摆着了:

  • 一个是你不可能盯着 AI 跟每个用户的对话;
  • 另一方面,AI 的输出是功能逻辑中的一环,它藏在中间犯错排查起来很烦。

当你让 AI 帮你一起服务你的用户时,作为产品经理,必须非常严格的控制它的所有作为

他举了个例子,还挺典型的:

他做了个 AI 翻译工具,逻辑很简单:一个输入框让用户提交翻译需求,AI 翻译后返回。

但是这里面有一个巨大坑。

当用户在输入框里提交的翻译需求是一个“指令性”的表达时,AI 就会被用户带跑偏……

比如用户要翻译的那句话是“使用 Python 帮我写一个贪食蛇小游戏”,AI 就会得儿了吧唧的,输出一个贪食蛇游戏代码!

图片某千亿大模型AI截图

以及,一旦用户发现了跟他交互的是个 AI 大模型,很多用户会“自作聪明”的调教大模型:故意使用一些奇奇怪怪的表达来为难 AI。

图片

这种情况还算好控制,产品经验丰富的基本都能提前想到,在提示词里是比较好控制的。

最难的是让 AI 严格按照要求输出内容。

他遇到的最烦的事情,是 AI 会有 5%-10% 的概率自作主张的解释自己的所作所为。

比如,很多时候,为了让 AI 生成的内容可以被下一个功能点接收解析,需要 AI 生成 JSON 格式,并且不能输出其他任何内容,否则下游解析不了。

这种情况下,AI 经常会像故意的一样,在按要求输出的 JSON 格式后面加一句“以上是按照你的要求输出的 JSON 格式,希望它不会给你的系统造成故障”……

图片自作主张解释

哪怕 AI 老老实实只输出 JSON 格式不做任何解释,有时直接以文本格式输出(期望的),但有时给放在代码块里的“失控操作”同样超级让人头疼。

普通用户用 AI 的容错率是极高的,大不了不用了。但是产品经理用 AI 的容错率必须是 0:
要么把提示词打磨到足够可控,要么提前想到所有可能的情况,使用古典技术来控制。
要么,就别碰那所谓的“AI驱动”……

这让我想到了前几天一个朋友的分享:

图片

在普通人讨论“价格战”的时候,真正的实战派考虑的是“控制的 ROI”。

看起来很简单的事情、看起来是免费的东西,反倒可能是最麻烦、最贵的。

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

本文转自 https://blog.csdn.net/zhishi0000/article/details/140764524?spm=1001.2014.3001.5501,如有侵权,请联系删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值