图书简介
获奖情况:“十一五”国家级规划教材、国家级精品课配套教材
配套资源:电子课件、教学思路流程图
作者简介:
王元元,解放军理工大学教授,国家级教学名师,中国人工智能学会离散数学专业委员会主任委员。执教30多年,先后出版专著12部、主编教材60余本,主编的《计算机科学中的逻辑学》教材获全国优秀教材奖,《离散数学》课被评为国家精品课程。
本书特色:
★书中每个知识点都配有相应练习题。
★依据给出的教学思路流程图和目录标题前的*号,可以控制学时和筛选素材。
申请样书,配套资源均可在本页面申请下载,也可联系微信15910938545直接索取
本主要介绍了有关集合论基础,逻辑代数,图论基础方面的知识。
章节目录
目录
出版说明
前言
第1章集合代数1
1.1集合的概念与表示1
1.1.1集合及其元素1
1.1.2集合的表示2
1.1.3外延性公理与子集合3
练习1.14
1.2集合运算7
1.2.1并、交、差、补运算7
1.2.2幂集运算和广义并、交运算9
1.2.3集合的笛卡儿积11
练习1.213
1.3集合的归纳定义的意义16
1.3.1集合的归纳定义16
*1.3.2集合定义的自然数17
练习1.319
第2章两个常用数学基本原理20
2.1归纳原理20
2.1.1结构归纳原理20
2.1.2数学归纳原理21
练习2.124
2.2鸽笼原理25
2.2.1鸽笼原理的基本形式25
*2.2.2鸽笼原理的加强形式27
练习2.228
第3章组合论基础计数30
3.1计数基本原理30
3.1.1加法原理和乘法原理30
3.1.2包含排斥原理31
练习3.133
3.2排列与组合34
3.2.1排列的计数34
3.2.2组合的计数35
练习3.236
3.3重集的排列与组合38
3.3.1重集的排列38
3.3.2重集的组合40
3.3.3禁位排列的计数42
练习3.343
3.4递归关系44
3.4.1一个重要的递归关系45
3.4.2递归关系的求解47
练习3.454
第4章逻辑代数(上):命题演算56
4.1命题与逻辑联结词56
4.1.1命题56
4.1.2逻辑联结词58
4.1.3命题公式59
4.1.4语句的形式化61
练习4.162
4.2逻辑等价式和逻辑蕴涵式64
4.2.1重言式64
4.2.2逻辑等价式和逻辑蕴涵式65
*4.2.3对偶原理68
练习4.269
4.3范式71
4.3.1析取范式和合取范式71
4.3.2主析取范式与主合取范式73
*4.3.3联结词的扩充与归约74
练习4.377
第5章逻辑代数(下):谓词演算79
5.1谓词演算基本概念79
5.1.1个体与个体域79
5.1.2谓词与谓词填式80
5.1.3量词及其辖域81
5.1.4谓词公式及语句的形式化82
练习5.185
5.2谓词演算永真式88
5.2.1谓词公式的真值规定88
5.2.2谓词演算永真式89
5.2.3关于永真式的几个基本原理91
练习5.293
5.3谓词公式的前束范式95
练习5.396
*第6章形式系统与推理技术98
6.1谓词演算形式系统FC98
6.1.1FC的基本构成98
6.1.2系统内的推理:证明与演绎99
6.1.3FC的重要性质100
练习6.1103
6.2自然推理形式系统ND104
6.2.1ND的基本构成104
6.2.2ND的系统内推理及性质107
练习6.2112
第7章图115
7.1图的基础知识116
7.1.1图的基本概念116
7.1.2结点的度117
7.1.3子图、补图及图同构118
练习7.1119
7.2路径、回路及连通性121
7.2.1路径与回路121
7.2.2连通性122
*7.2.3连通度124
练习7.2125
7.3欧拉图与哈密顿图127
7.3.1欧拉图及欧拉路径127
7.3.2哈密顿图及哈密顿通路129
练习7.3132
7.4图的矩阵表示133
7.4.1邻接矩阵133
7.4.2路径矩阵与可达性矩阵135
练习7.4137
第8章二分图、平面图和树138
8.1二分图138
8.1.1二分图的基本概念138
8.1.2匹配139
练习8.1142
8.2平面图143
8.2.1平面图的基本概念143
8.2.2欧拉公式和库拉托夫斯基定理145
*8.2.3着色问题148
练习8.2151
8.3树152
8.3.1树的基本概念152
8.3.2生成树153
8.3.3根树157
练习8.3163
第9章关系165
9.1关系165
9.1.1关系的基本概念165
9.1.2关系的基本运算168
9.1.3关系的基本特性173
9.1.4关系特性闭包176
练习9.1178
9.2等价关系182
9.2.1等价关系与等价类182
9.2.2等价关系与划分183
练习9.2188
9.3序关系189
9.3.1序关系和有序集189
*9.3.2良基性与良序集,完备序集193
*9.3.3全序集与良序集的构造195
练习9.3196
第10章函数200
10.1函数及函数的合成200
10.1.1函数的基本概念200
*10.1.2函数概念的拓广203
10.1.3函数的合成204
10.1.4函数的递归定义205
练习10.1207
10.2特殊函数类208
10.2.1单射的、满射的和双射
的函数208
*10.2.2规范映射、单调映射和
连续映射210
练习10.2212
10.3函数的逆213
练习10.3215
*10.4有限集和无限集216
10.4.1有限集、可数集与不可数集216
10.4.2无限集的特性219
10.4.3有限集和无限集的基数220
10.4.4基数比较222
练习10.4224
第11章递归函数集与可计算性226
11.1初等函数集226
11.1.1初等函数226
11.1.2初等谓词229
练习11.1231
11.2原始递归函数集232
11.2.1初等函数集的不足232
11.2.2原始递归式233
11.2.3原始递归函数234
练习11.2236
11.3递归函数集236
11.3.1阿克曼函数及其性质236
11.3.2μ-递归式238
11.3.3递归函数集(μ-递归
函数集)239
练习11.3240
*11.4图灵机与可计算函数集240
11.4.1图灵机240
11.4.2图灵可计算函数243
练习11.4246
第12章代数结构概论248
12.1代数结构248
12.1.1代数结构的意义248
12.1.2代数结构的特殊元素249
12.1.3子代数结构252
练习12.1253
12.2同态、同构及同余255
12.2.1同态与同构255
12.2.2同余关系259
练习12.2261
*12.3商代数262
练习12.3264
第13章群、环、域266
13.1半群266
13.1.1半群及独异点266
*13.1.2自由独异点267
*13.1.3高斯半群268
练习13.1270
13.2群271
13.2.1群及其基本性质271
13.2.2子群、陪集和拉格朗日定理274
*13.2.3正规子群、商群和同态
基本定理276
练习13.2278
13.3循环群和置换群280
13.3.1循环群280
*13.3.2置换群281
练习13.3284
13.4环285
13.4.1环和整环285
*13.4.2子环和理想287
练习13.4289
*13.5域和有限域289
练习13.5292
第14章格与布尔代数294
14.1格294
14.1.1格——有序集294
14.1.2格代数297
14.1.3分配格和模格300
练习14.1302
14.2布尔代数303
14.2.1有界格和有补格303
14.2.2布尔代数305
*14.2.3布尔代数表示定理307
*14.2.4布尔表达式与布尔函数310
练习14.2312
参考文献314
图书评论