今天继续打卡这本《云数据中心构建实战-核心技术、运维管理、安全与高可用》(Build Cloud Data Center-Core Technology,Operation,Maintenance,Security,High Availability)。
第三章 挑战传统:核心应用聚合云端
1、数据中心是处理中心、运算中心、存储中心、流通中心的大集合。传统“烟囱式”数据中心,运营成本无限递增、能源消耗难以控制、管理复杂、资源滥用、难以体现社会责任,当问题发生时,系统平台不能独立完成资源的迁移,只能依靠管理人员手动操作,而这一切管理人员处于被动的“救火”状态,担心故障的发生,也担心是否有能力迅速地解决问题。
2、IaaS核心技术体系
Infrastructure as a Service,基础设施即服务,供应商提供计算、存储能力,用户根据自身需求租用适宜的资源,并对其租用的部分进行周期性的付费。用户不必考虑冗余 、管理、灾备等问题。
IaaS的优势:“零”维护、更经济、门槛低、易扩展、异构平台支持。
关键技术:虚拟化的实现:单资源 的多逻辑表示,多点资源 的单逻辑表示,分层虚拟。
服务器虚拟化技术:一虚多、多虚一、多虚多。存储虚拟化技术:单一资源虚拟化存储模式、多个资源虚拟化存储模式、分层虚拟化存储模式。网络虚拟化技术:vlan、vpn。
3、PaaS核心技术体系
Platform as a Service,平台即服务,把服务器平台打包成一个服务,向有户提供该服务的一个模式。通常来说PaaS将软件研发平台打包,再通过SaaS的模式交付给用户。SaaS平台更趋向于应用,而PaaS平台则定位于中间件,可以提供定制化的研发,同时涉及应用的数据库。
PaaS平台包括APaaS和IPaaS。APaaS(Application Platform as a Service)主要提供开发的SDK和应用运行环境,IPaaS(Integration Platform as a Service)提供集成、编排和互操作的功能。
PaaS的优势:低成本简约部署、针对性的应用环境、充分利用开源技术、解放被“绑架”的平台。
PaaS平台格局分析:Microsofe Windows Azure(微软云计算战略中的平台)、Salesforce.com之force.com和Heroku、VMware Cloud Foundry、Google App Engine、Amazon Elastic Beanstalk、RedHat OpenShift。
PaaS关键技术:分布式文件系统、分布式数据库、分布式计算、分布式同步机制、协同管理技术。
4、SaaS核心技术体系
Software as a Service,软件即服务,通过Internet交付软件的模式,用户不用购置信息系统、而是向SaaS服务提供商租用信息系统,并通过web浏览器登录、操作该信息系统,完成企业的生产、经营与管理行为。
SaaS成熟度模型分级,SaaS从系统架构的角度需要考虑三方面的因素:可扩展(Scalable)、高效多租户(Multi-Tenant-Efficient)和可配置(Configurable)。Lever1-定制开发,Lever2-可配置,Lever3-可配置&高效多租户,Lever4-可配置&高效多租户&可扩展。
哪些应用更加适合SaaS:企业ERP(Enterprise Resource Planning,企业资源计划)、SCM(Supply Chain Management)系统、CRM(Customer Relationship Management,客户关系管理)系统、OA(Office Automation,办公自动化)系统、HRM(Human Resource Management,人力资源管理)系统、电子商务系统、财务管理系统、在线视频会议、在线学习平台。
SaaS关键技术:基于Web的访问,单软件多重租赁,单点登录,扩展&配置&伸缩。
第4章 动态规划:构建云时代数据中心
云数据中心主要特性:超级规模、面向服务、高负载密度、端到端能力、自动化管理、自动化管理、可伸缩性、高敏捷性、按需服务、低碳-环保-节能-绿色。
云数据中心体系结构:“云”不是一个独立的产品,也不是一个硬件架构或软件架构,它提供的是一个完整的服务,拥有完整的体系结构,既需要向最终交付用户负责,也需要向数据中心管理人员提供准确的平台数据。包括:友好的用户界面、定制服务和资源付费、云平台管理、模板部署、平台监控、安全保障。
云数据中心结构分层:用户接口层、资源池层、应用层、平台层、管理层。
云数据中心核心技术:虚拟调度技术、网络支撑技术、系统监控与管理技术、数据保护技术、绿色数据中心技术。
第5章 顶级管理:构建云时代数据中心平台
云数据中心统一架构:统一计算、统一交换、统一管理、统一通信。
云数据中心计算模式分析:并行计算、分布式计算、网格计算、效用计算。
云数据中心与虚拟化技术主要分为3类:平台虚拟化(Platform Virtualization)-针对服务器和操作系统的虚拟化(全虚拟化、半虚拟化、硬件辅助虚拟化和操作系统级虚拟化)、资源虚拟化(Resource Virtualization)和应用虚拟化(Application Virtualization)。
服务器虚拟化必备技术:模板技术、按需自动资源调配、自主灾难恢复技术、支持高性能存储、支持FT(Fault Tolerance)容错、“即插即用”技术。
存储虚拟化分类:按照存储介质分类(块虚拟化、磁盘虚拟化、磁带/磁带库虚拟化、文件系统虚拟化、其他设备虚拟化)、按照层面分类(基于主机的虚拟化、基于存储网络的虚拟化、基于存储设备的虚拟化)、按照虚拟实施分类(带内虚拟化、带外虚拟化)。
网络虚拟化:虚拟交换机、虚拟以太网适配器、虚拟交换模式(在物理与虚拟之间、虚拟与虚拟之间,交换模式主要有三个:底层传输模式、宿主模式、网络地址转换模式)。
虚拟化管理:高可用性、跨数据中心支持、支持VM模板、自动备份和恢复、报警机制、动态资源调配、提供监控报表、支持RBAC/LDAP、支持VLAN和PVLAN、支持公有云技术。
虚拟化技术之风险:虚拟技术与存储架构脱节、与网络架构脱节、与安全技术脱节、虚拟系统自身存在安全风险。
云数据中心与大数据管理
大数据存储技术:DAS(Direct-Attached Storage,开放系统的直连式存储技术)、NAS(Network Attached Storage,网络存储技术)、SAN(Storage Area Network,存储区域网络技术)。三种存储技术各有优缺点,SAN的优势明显,但成本较高,NAS性上有劣势,但管理便捷,成本较合理。DAS较少用于数据中心存储领域。
大数据处理技术:存储虚拟化技术、自动精简配置、动态存储分层、分布式存储、数据挖掘、智能分析。大数据处理辅助技术:删除得利数据、优化数据调用代码、选择高效数据库工具、建立数据仓库、视图管理模式和大数据安全与容灾。
今天先到这里吧!