文本相似度计算python lda_如何识别“答非所问”?使用gensim进行文本相似度计算...

在文本处理中,比如商品评论挖掘,有时需要了解每个评论分别和商品的描述之间的相似度,以此衡量评论的客观性。

评论和商品描述的相似度越高,说明评论的用语比较官方,不带太多感情色彩,比较注重描述商品的属性和特性,角度更客观。

再比如知乎、贴吧等问答社区内问题下面有很多回复者,如何快速过滤掉与问题无关的回答或者垃圾广告??

那么Python 里面有计算文本相似度的程序包吗,恭喜你,不仅有,而且很好很强大。

使用gensim进行文本相似度计算

原理

1、文本相似度计算的需求始于搜索引擎。

搜索引擎需要计算“用户查询”和爬下来的众多”网页“之间的相似度,从而把最相似的排在最前返回给用户。

2、主要使用的算法是tf-idf

tf:term frequency 词频

idf:inverse document frequency 倒文档频率

主要思想是:如果某个词或短语在一篇文章中出现的频率高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。

第一步:把每个网页文本分词,成为词包(bag of words)。

第三步:统计网页(文档)总数M。

第三步:统计第一个网页词数N,计算第一个网页第一个词在该网页中出现的次数n,再找出该词在所有文档中出现的次数m。则该词的tf-idf 为:n/N * 1/(m/M) (还有其它的归一化公式,这里是最基本最直观的公式)

第四步:重复第三步,计算出一个网页所有词的tf-idf 值。

第五步:重复第四步,计算出所有网页每个词的tf-idf 值。

3、处理用户查询

第一步:对用户查询进行分词。

第二步:根据网页库(文档)的数据,计算用户查询中每个词的tf-idf 值。

4、相似度的计算

使用余弦相似度来计算用户查询和每个网页之间的夹角。夹角越小,越相似。

学习目标:

利用gensim包分析文档相似度

使用jieba进行中文分词

了解TF-IDF模型

注:为了简化问题,本文没有剔除停用词“stop-word”。实际应用中应该要剔除停用词。

安装相关包

pip install jieba

pip install gensim

关于结巴分词,这里推荐

https://github.com/WenDesi/zhcnSegment

已经将主要功能封装好,包括添加自定义语料,添加停用词等,简单、易调用

首先引入分词API库jieba、文本相似度库gensim

importjieba

fromgensimimportcorpora,models,similarities

以下doc0-doc7是几个最简单的文档,我们可以称之为目标文档,本文就是分析doc_test(测试文档)与以上8个文档的相似度。

doc0 ="我不喜欢上海"

doc1 ="上海是一个好地方"

doc2 ="北京是一个好地方"

doc3 ="上海好吃的在哪里"

doc4 ="上海好玩的在哪里"

doc5 ="上海是好地方"

doc6 ="上海路和上海人"

doc7 ="喜欢小吃"

doc_test="我喜欢上海的小吃"

分词

首先,为了简化操作,把目标文档放到一个列表all_doc中。

all_doc = []

all_doc.append(doc0)

all_doc.append(doc1)

all_doc.append(doc2)

all_doc.append(doc3)

all_doc.append(doc4)

all_doc.append(doc5)

all_doc.append(doc6)

all_doc.append(doc7)

以下对目标文档进行分词,并且保存在列表all_doc_list中

all_doc_list = []fordoc in all_doc:

doc_list = [wordforwordin jieba.cut(doc)]

all_doc_list.append(doc_list)

把分词后形成的列表显示出来:

print(all_doc_list)

[[‘我’, ‘不’, ‘喜欢’, ‘上海’],

[‘上海’, ‘是’, ‘一个’, ‘好’, ‘地方’],

[‘北京’, ‘是’, ‘一个’, ‘好’, ‘地方’],

[‘上海’, ‘好吃’, ‘的’, ‘在’, ‘哪里’],

[‘上海’, ‘好玩’, ‘的’, ‘在’, ‘哪里’],

[‘上海’, ‘是’, ‘好’, ‘地方’],

[‘上海’, ‘路’, ‘和’, ‘上海’, ‘人’],

[‘喜欢’, ‘小吃’]]

以下把测试文档也进行分词,并保存在列表doc_test_list中

doc_test_list = [wordforwordin jieba.cut(doc_test)]

doc_test_list

[‘我’, ‘喜欢’, ‘上海’, ‘的’, ‘小吃’]

制作语料库

首先用dictionary方法获取词袋(bag-of-words)

dictionary =corpora.Dictionary(all_doc_list)

词袋中用数字对所有词进行了编号

dictionary.keys()

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]

编号与词之间的对应关系

dictionary.token2id

{‘一个’: 4,

‘上海’: 0,

‘不’: 1,

‘人’: 14,

‘北京’: 8,

‘和’: 15,

‘哪里’: 9,

‘喜欢’: 2,

‘在’: 10,

‘地方’: 5,

‘好’: 6,

‘好吃’: 11,

‘好玩’: 13,

‘小吃’: 17,

‘我’: 3,

‘是’: 7,

‘的’: 12,

‘路’: 16}

以下使用doc2bow制作语料库

corpus = [dictionary.doc2bow(doc)

fordocinall_doc_list]

语料库如下。语料库是一组向量,向量中的元素是一个二元组(编号、频次数),对应分词后的文档中的每一个词。

[[(0, 1), (1, 1), (2, 1), (3, 1)],

[(0, 1), (4, 1), (5, 1), (6, 1), (7, 1)],

[(4, 1), (5, 1), (6, 1), (7, 1), (8, 1)],

[(0, 1), (9, 1), (10, 1), (11, 1), (12, 1)],

[(0, 1), (9, 1), (10, 1), (12, 1), (13, 1)],

[(0, 1), (5, 1), (6, 1), (7, 1)],

[(0, 2), (14, 1), (15, 1), (16, 1)],

[(2, 1), (17, 1)]]

以下用同样的方法,把测试文档也转换为二元组的向量

doc_test_vec =dictionary.doc2bow(doc_test_list)

doc_test_vec

[(0, 1), (2, 1), (3, 1), (12, 1), (17, 1)]

相似度分析

使用TF-IDF模型对语料库建模。

gensim包提供了这几个模型: TF-IDF、LSI 、LDA

因此我们直接拿来用就好

tfidf =models.TfidfModel(corpus)

#models.LsiModel()

#models.LdaModel()

获取测试文档中,每个词的TF-IDF值

tfidf[doc_test_vec]

[(0, 0.08112725037593049),

(2, 0.3909393754390612),

(3, 0.5864090631585919),

(12, 0.3909393754390612),

(17, 0.5864090631585919)]

对每个目标文档,分析测试文档的相似度

index= similarities.SparseMatrixSimilarity(tfidf[corpus],

num_features=len(dictionary.keys()))

sim =index[tfidf[doc_test_vec]]

sim

array([ 0.54680777, 0.01055349, 0. , 0.17724207, 0.17724207,

0.01354522, 0.01279765, 0.70477605], dtype=float32)

根据相似度排序

sorted(enumerate(sim), key=lambda item: -item[1])

[(7, 0.70477605),

(0, 0.54680777),

(3, 0.17724207),

(4, 0.17724207),

(5, 0.013545224),

(6, 0.01279765),

(1, 0.010553493),

(2, 0.0)]

从分析结果来看,测试文档与doc7相似度最高,其次是doc0,与doc2的相似度为零。大家可以根据TF-IDF的原理,看看是否符合预期。

原文发布时间为:2018-09-6

本文来自云栖社区合作伙伴“大数据挖掘DT机器学习”,了解相关信息可以关注“大数据挖掘DT机器学习”。

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值