世界上最难的视觉图_1+1=2的证明方法,为什么称为世界上最难的数学题?

虽然1+1=2看似简单,但其背后的数学逻辑却难以证明。本文探讨了陈景润对于哥德巴赫猜想的部分证明,并介绍了利用皮亚诺公理证明1+1=2的尝试。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1+1等于几,这几乎小学一年级都可以脱口而出的数学题,为什么证明这个关系成立,耗尽所有数学家的毕生心血,都无法去证明呢?

我们都知道,1+1=2,是最简单的数学公式,其次才有1+2=3,1+3=4.....,种种数学等式出来。可见1+1=2是所有数学公式的基础,也是数学这么学科的根本,关于这条等式,你知道?到现在都没人能够证明。

8e942de70fa0764c6ee1a8f80177ccc1.png

接下来为大家讲解下,这个公式有何难解之处。

1. 都说陈景润证明了(1+2)但是还没人能证明(1+1)。总觉得好奇。。
1+1=2不是我们小学就知道的吗?
没经过证明我们怎么就在用了呢?
1+1=2不是和1+2=3一样的证明方法吗?

2. 首先你要知道。陈景润证明的是“哥德巴赫猜想”相关的问题。
哥德巴赫猜想是一个叫哥德巴赫的数学家提出的,大概是说:任何一个大于2的偶数都能分解成两个素数之和。
比方说8=3+5,26=19+5……
素数是指该数只能被1和它本身除尽。比方7,11,19。
现在这个命题还没有得到证明。但是通过计算机的高速运算,人们可以计算出直到很大很大的数字上,这个命题都是正确的。它应该就是正确的。
很早以前,外国人就证明了任何一个大于X(X应该不会很大)的偶数都能分解成一个素数与7个素数乘积的和。人们把这个表示成(1+7)
后来慢慢有人能证明一个大偶数能分解成一个素数与6个素数乘积的和(1+6);一个素数与5个素数乘积的和(1+5)……。
再后来,我国的陈景润证明了任何一个大偶数都能分解成一个素数与2个素数乘积的和,这就是人们常说的(1+2)。比方18=3(3*5);30=5+(5*5)。

d8922bff62c673dfd49b9899691d2cea.png

3. 同理可证,要证明1+1=2,要用到要用皮亚诺公理才能证明,关于0的定义和1的定义。

6456bdde8bf3d50e467dbf7b74f808f5.png

关于这一点的思考要充分,这本是一个非常自然的数,但在数学强调逻辑的里面,数字的开端无疑像宇宙大爆炸的基点一样。

7907e809257c858848ebc50529be3413.png

皮亚诺公理基本上雏形是有了:数字的开端都为零,两个零相加按照数学逻辑也会等于2。

d9af4cfa6149ce8701664df7bc6c90e8.png

公理1:0是自然数。

公理2:每一个确定的自然数 ,都有一个确定的后继数 , 也是自然数。

公理3:0不是任何自然数的后继数。

公理4:不同的自然数有不同的后继数。

先证明这4条公理成立。

接下来开始证明1+1=2

398f3406085ca5058cd12faa5310e48a.png

但是,此结果,并不能证明1+1=2,只能证明另两个自然数相加,满足前4条公理的情况下,等式才成立。

不知道各位怎么看待这个问题,欢迎大家留言讨论。

<think>嗯,用户之前让我用比喻的方式介绍卷积,现在他们想要一个更专业的讲解,包括原理。我需要调整之前的回答方式,从比喻转向更技术性的解释。首先,我应该明确用户的需求,他们可能已经对卷积有了基础的理解,现在希望深入原理,可能是在学习机器学习或像处理相关的课程,需要更详细的数学和算法层面的内容。 接下来,我需要考虑如何结构化的呈现专业内容。可能需要包括数学定义、卷积运算的步骤、卷积核的作用、参数如步长和填充的影响,以及在深度学习中的应用。同时,用户可能希望了解离散卷积和连续卷积的区别,以及卷积在信号处理中的起源。 还要注意之前的回答中提到的“手电筒扫描”的比喻,现在需要在此基础上扩展数学公式和术语。比如,将滑动窗口操作转化为数学公式,解释互相关与卷积的区别,以及卷积在神经网络中的重要性,如参数共享、局部连接等概念。 用户可能没有说出来的需求是希望理解卷积为何有效,它的数学基础是什么,以及在具体应用中的实现细节。可能需要提到不同的卷积类型,比如1D、2D、3D,或者扩张卷积、转置卷积等高级话题,但作为基础的专业讲解,应该先集中在标准卷积上。 需要检查是否有遗漏的关键点,比如卷积定理、傅里叶变换的关系,但可能对于初步的专业讲解来说,这些内容可能过于深入,可以简要提及或留到更高级的讨论。同时,要确保解释清晰,避免过于复杂的数学推导,但又要准确。 最后,要确保回答结构清晰,分点明确,使用专业术语但不过于晦涩,可能需要举例说明不同的卷积核效果,以及实际应用中的案例,比如在CNN中的使用。还要验证之前提到的测试题答案是否正确,确保专业性与准确性。</think>好的!以下是对卷积的**专业级讲解**,涵盖数学原理、算法细节与核心思想: --- ### **1. 数学定义** #### **连续域卷积** 对于两个连续函数 \( f(t) \) 和 \( g(t) \),其卷积定义为: \[ (f * g)(t) = \int_{-\infty}^{\infty} f(\tau) g(t - \tau) d\tau \] - **物理意义**:表征一个函数在另一个函数**滑动加权叠加**后的结果,常用于信号处理中的线性时不变系统(LTI)。 #### **离散域卷积(计算机实现)** 对于离散信号 \( f[i] \) 和 \( g[j] \),卷积为: \[ (f * g)[n] = \sum_{m=-\infty}^{\infty} f[m] \cdot g[n - m] \] - **有限长信号**:实际操作中仅计算重叠部分(如像与卷积核的交集区域)。 --- ### **2. 卷积的核心操作** 以**二维离散卷积**(像处理为例): 1. **输入**:像矩阵 \( I \)(尺寸 \( H \times W \)),卷积核 \( K \)(尺寸 \( k_h \times k_w \))。 2. **滑动窗口**:将卷积核中心(或左上角)沿像逐像素滑动(步长 \( s \))。 3. **点乘累加**:在每个位置,计算核与对应像区域的**逐元素乘积之和**: \[ O[i,j] = \sum_{m=0}^{k_h-1} \sum_{n=0}^{k_w-1} I[i+m, j+n] \cdot K[m,n] \] 4. **输出**:特征 \( O \)(尺寸由 \( H, W, k_h, k_w, s, padding \) 决定)。 --- ### **3. 关键参数与计算细节** #### **(1) 填充(Padding)** - **目的**:控制输出尺寸,避免边缘信息丢失。 - **方式**: - `Valid`:无填充,输出尺寸缩小。 - `Same`:填充使输出尺寸与输入相同(填充数 \( p = \lfloor k/2 \rfloor \))。 - **数学公式**:输出尺寸 \[ H_{out} = \left\lfloor \frac{H_{in} + 2p - k}{s} \right\rfloor + 1 \] #### **(2) 步长(Stride)** - **作用**:控制滑动步幅,影响特征分辨率和计算效率。 - **极端情况**:当 \( s \geq k \) 时,可能跳过局部区域(信息丢失)。 #### **(3) 多通道卷积** - **输入**:多通道数据(如RGB像的3通道)。 - **操作**:每个通道与对应核卷积后求和,输出单通道特征: \[ O = \sum_{c=1}^{C} (I_c * K_c) + b \] (\( C \): 输入通道数,\( b \): 偏置项) --- ### **4. 卷积的物理意义与特性** #### **(1) 局部感知(Local Connectivity)** - **生物学启发**:模拟视觉皮层神经元对局部感受野的响应。 - **稀疏交互**:每个输出仅依赖局部输入区域,减少参数冗余。 #### **(2) 参数共享(Weight Sharing)** - **核心思想**:同一卷积核在全局滑动,提取**平移不变特征**。 - **参数效率**:参数数量与核尺寸相关,而非输入尺寸(避免全连接层的参数爆炸)。 #### **(3) 层次化特征提取** - **浅层**:检测边缘、颜色等低级特征。 - **深层**:组合低级特征为高级语义(如物体部件、整体形状)。 --- ### **5. 卷积 vs. 互相关(Cross-Correlation)** - **数学差异**:卷积需对核进行**水平+垂直翻转**,而互相关直接滑动计算。 - **深度学习惯例**:实际代码中通常实现的是**互相关**,但约定俗成称为“卷积”(翻转操作被学习过程隐含吸收)。 --- ### **6. 卷积的变体** | **类型** | **特点** | **应用场景** | |------------------|---------------------------------------|-------------------------| | 空洞卷积(Dilated) | 核元素间隔采样,扩大感受野 | 语义分割(保持分辨率) | | 转置卷积(Transposed)| 逆向插值,实现上采样 | 生成对抗网络(像生成) | | 分组卷积(Group) | 将通道分组,减少计算量 | 轻量级模型(如MobileNet) | | 可分离卷积(Separable)| 分解为深度卷积 + 逐点卷积 | 降低计算复杂度 | --- ### **7. 数学本质:卷积定理** - **频域加速**:时域卷积等效于频域乘积: \[ \mathcal{F}\{f * g\} = \mathcal{F}\{f\} \cdot \mathcal{F}\{g\} \] - **实际应用**:快速卷积算法(FFT优化),但对小尺寸核加速效果有限。 --- ### **8. 代码级实现(伪代码)** ```python def conv2d(image, kernel, stride=1, padding=0): H, W = image.shape k_h, k_w = kernel.shape p = padding # 计算输出尺寸 out_h = (H + 2*p - k_h) // stride + 1 out_w = (W + 2*p - k_w) // stride + 1 output = np.zeros((out_h, out_w)) # 填充像 image_padded = np.pad(image, pad_width=p, mode='constant') # 滑动窗口计算 for i in range(out_h): for j in range(out_w): region = image_padded[i*stride:i*stride+k_h, j*stride:j*stride+k_w] output[i,j] = np.sum(region * kernel) return output ``` --- ### **9. 核心价值** - **特征工程的自动化**:通过反向传播学习最优卷积核参数,替代手工设计滤波器。 - **层次化抽象能力**:从像素到语义的渐进式表征,构成深度神经网络的基础模块。 --- ✅ **深度思考题**: 如何证明“步长 \( s > 1 \) 的卷积”等效于“先进行步长 \( s=1 \) 卷积,再下采样”?其频域特性有何变化? (提示:考虑Nyquist采样定理与混叠现象)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值