(大家看这里:由于头条不能标注颜色,无法体现出重点,如果需要重点版,可以 关注微信公众号“一字书斋”)
第六章 一元一次方程
6.1方程的有关概念
考点一:等式及其性质
1. 等式:用等号“=”来表示相等关系的式子叫做等式
2. 等式的性质:(重点重点重点)
(1)等式两边同时加(或者减)同一个数(或式子),结果相等。即如果a=b,那么
a+c=b+c(a-c=b-c)
(2)等式两边同时乘同一个数,或除以同一个不为0的数,结果相等。即如果a=b,那么
ac=bc;如果a=b,c≠0,那么a/c=b/c
(3)传递性:如果a=b b=c,那么a=c
(4)对称性:如果a=b,那么b=c
考点二:方程及方程的解
1. 方程:含有未知数的等式叫做方程
2. 方程的解:使方程左右两边相等的未知数的值叫做方程的解
3. 求方程的解的过程叫做解方程
注意:
(1)方程是一种特殊的等式,但等式不一定是方程
(2)一元一次方可能无解,可能只有一个解,也可能有无数个解
(3)方程的解是结果,而解方程是得到这个结果的过程
6.2 解一元一次方程
考点一:一元一次方程
1. 一元一次方程:只含一个未知数(元),并且未知数的最高次数是1的整式方程叫做一元一次方程
2. 一般形式:ax+b=0 (其中x是未知数,a、b是已知数,且a≠0)
3. 判断方法:一定要先把方程化简,再根据定义判断
考点二:一元一次方程的解法
解一元一次方程的一般步骤:(重点重点重点)
注意:
(1)上述的五个步骤,不一定都需要,也有可能重复使用,并且没有一定的固有顺序,需根据方程特性灵活运用
(2)关于x的方程ax=b,如没有给出a,b的取值,则其解有以下三种情况:①当a≠0时,方程是一元一次方程,有唯一解;②当a=0,b≠0时,方程无解;③当a=0,b=0时,方程有无数个解
6.2 列一元一次方程的解应用题
考点一:列一元一次方程解应用题的一般步骤(重点)
1. 审:审题,分析题目中已知什么,求什么,明确各数量之间的关系;
2. 设:设未知数,用字母表示题目中的一个未知量
3. 找:找出能够表示应用题全部含义的一个相等关系
4. 列:根据这个相等关系列方程
5. 解:解方程,求未知数
6. 验:检验答案是否符合问题的实际意义
7. 答:写出答案(包括单位)
注意:
设未知数的方法有三种;(1)直接设未知数,(2)简接设未知数,(3)设辅助未知数
考点二:一元一次方程应用题的常见类型(重点重点重点重点)